GREEN BUILDING ENVELOPES 101

Defining the FIRST STEPS to Carbon Neutral Design

Professor Terri Meyer Boake

Associate Director | School of Architecture | University of Waterloo Past President Society of Building Science Educators Member OAA Committee for Sustainable Built Environment

What is a Green Building Envelope?

A new skin on an old building?

A skin that responds to the climate?

A skin on a LEED[™] building?

A Skin that addresses Global Warming and Sustainable Design!

- A priority has been placed, above and beyond current trends in Sustainable Design, on the reduction of GHG emissions
- Buildings account for more than 40% of the GHG
- Green, Sustainable and High Performance Buildings are not going far enough, quickly enough in reducing their negative impact on the environment
- Carbon Neutrality focuses on the relationship between all aspects of "building/s" and CO₂ emissions
- Carbon Neutral Design strives to reverse trends in Global Warming

Basic Concept of Sustainable Design:

Sustainable design is a *holistic* **way** of designing buildings to minimize their environmental impact through:

- Reduced dependency on non-renewable resources
- A more bio-regional response to climate and site
- Increased efficiency in the design of the building envelope and energy systems
- A environmentally sensitive use of materials
- Focus on healthy interior environments
- Characterized by buildings that aim to *"live lightly on the earth"* and

- "Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

United Nations World Commission on Environment and Development

From ZED to Carbon Neutral

- A **Near Zero Energy** building produces at least 75% of its required energy through the use of onsite renewable energy. Off-grid buildings that use some non-renewable energy generation for backup are considered near zero energy buildings because they typically cannot export excess renewable generation to account for fossil fuel energy use.
- A **Carbon Neutral Building** derives 100% of its energy from non fossil fuel based renewables.

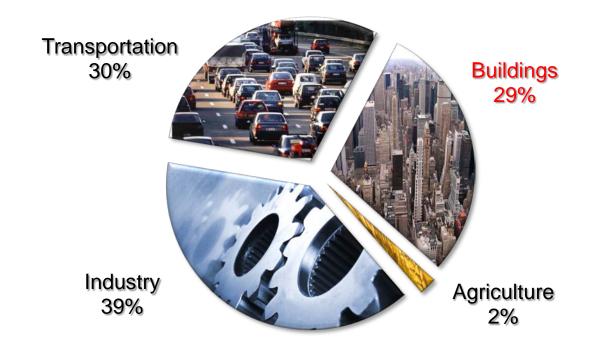
Why Assess Carbon Neutrality?

- Sustainable design does not go far enough
- Assessing carbon is complex, but necessary
- The next important goal to reverse the effects of global warming and reduce CO² emissions it to make our buildings "carbon neutral"

"architecture2030" is focused on raising the stakes in sustainable design to challenge designers to reduce their carbon emissions
 by 50% by the year 2030

www.architecture2030.org

ENERGY CONSUMPTION IN NORTH AMERICA


BUILDINGS USE MORE ENERGY THAN CARS AND TRUCKS!

Industry 25%

Transportation 27%

Buildings 48%

The Global Warming Pie....

These values look at <u>Secondary Energy Use by Sector in Canada</u> (2006) (energy used by the final consumer i.e. operating energy)

The LEAP to Zero Carbon and beyond...

- Energy Efficient (mid 1970s "Oil Crisis" reaction)
 - High Performance (accountable)
 - >Green (environmentally responsive)
 - Sustainable (holistic and accountable)
 - Carbon Neutral (Zero Fossil Fuel Energy)
 Restorative
 - Regenerative (Living Buildings)

...a steady increase in the nature and expectations of performance criteria ... a steady increase in the requirements on the building envelope

Fossil Fuel Reduction Standard:

The fossil fuel **reduction standard** for all **new buildings** shall be increased to:

60% in 2010 70% in 2015 80% in 2020 90% in 2025 **Carbon-neutral in 2030** (using no fossil fuel GHG emitting energy to **operate**).

Source: www.architecture2030.org

2030 Targets - Commercial

2030 CHALLENGE Targets: National Averages

U.S. Average Site Energy Use and 2030 Challenge Energy Reduction Targets by Space/Building Type (CBECS 2003)¹

Primary Space/Building Type ²	Available		Average Percent Electric	Average Site EUI ⁴ (kBtu/Sq.Ft./Yr)	2030 Challenge Site EUI Targets (kBtu/Sq.Ft./Yr)				
	in Target Finder ³				50% Target	60% Target	70% Target	80% Target	90% Target
Administrative/Professional & Government Office	1								
Bank	√								
Clinic/other outpatient health		219	76%	84.2	42.1	33.7	25.3	16.8	8.4
College/university (campus-level)		280	63%	120	60	48	36	24	12
Convenience store (with or without gas station)		753	90%	241.4	120.7	96.6	72.4	48.3	24.1
Distribution/shipping center		90	61%	44.2	22.1	17.7	13.3	8.8	4.4
Fast food		1306	64%	534.3	267.2	213.7	160.3	106.9	53.4
Fire station/police station		157	56%	77.9	39.0	31.2	23.4	15.6	7.8
Hospital/inpatient health	1								
Hotel, Motel or inn	1								
K-12 School	1								
Medical Office	1								

From the Environmental Protection Agency (EPA): Use this chart to find the site fossil-fuel energy targets.

Target Finder is an online tool:

http://www.energystar.gov/index.cfm?c=new_bldg_design.bus_target_finder

2030 Targets – Residential:

2030 CHALLENGE Targets: Residential Regional Averages

U.S. Regional Averages for Site Energy Use and 2030 Challenge Energy Reduction Targets by Residentail Space/Building Type (RECS 2001)¹ From the Environmental Protection Agency (EPA): Use this chart to find the site fossil-fuel energy targets.

	Average		2030 Challenge Site EUI Targets (kBtu/Sq.Ft./Yr)						
Residential Space/Building Type ²	Source EUI ^{3, 4} (kBtu/Sq.Ft./Yr)		50% Target	60% Target	70% Target	80% Target	90% Target		
Northeast									
Single-Family Detached	67.5	45.7	22.9	18.3	13.7	9.1	4.6		
Single-Family Attached	68.6	50.3	25.1	20.1	15.1	10.1	5.0		
Multi-Family, 2 to 4 units	78.8	57.8	28.9	23.1	17.3	11.6	5.8		
Multi-Family, 5 or more units	98.2	60.7	30.4	24.3	18.2	12.1	6.1		
Mobile Homes	145.5	89.3	44.6	35.7	26.8	17.9	8.9		
Midwest									
Single-Family Detached	76.2	49.5	24.7	19.8	14.8	9.9	4.9		

...etc.

http://www.architecture2030.org/downloads/2030_Challenge_Targets_Res_Regional.pdf

Operating Energy of Building

80% of the problem!

Landscape + Site

•

2

Disturbance vs. sequestration

Embodied Carbon in Building Materials

People, "Use" + Transportation

Counting Carbon costs....

Renewables + Site Generation

+ purchased offsets

Operating Energy of Building

80% of the problem!

Building envelope performance directly impacts operating energy

Embodied Carbon in Building Materials Building envelope material selection and sourcing directly impacts embodied energy

Counting Carbon costs....

Energy vs Greenhouse Gas Emissions

In BUILDINGS, for the sake of argument

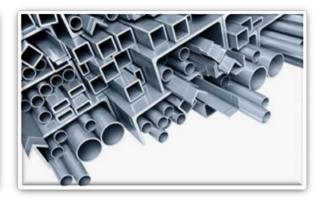
ENERGY CONSUMPTION = GHG EMISSIONS

BUILDING ENERGY IS COMPRISED OF

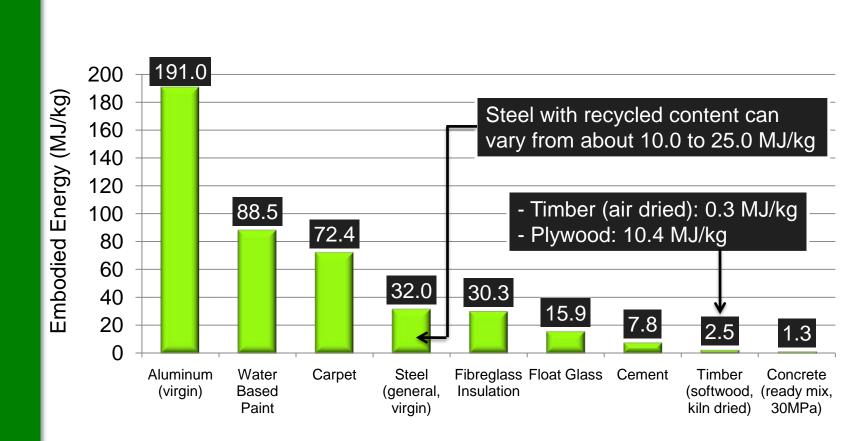
EMBODIED ENERGY + OPERATING ENERGY

Energy Use in Buildings

Embodied Energy

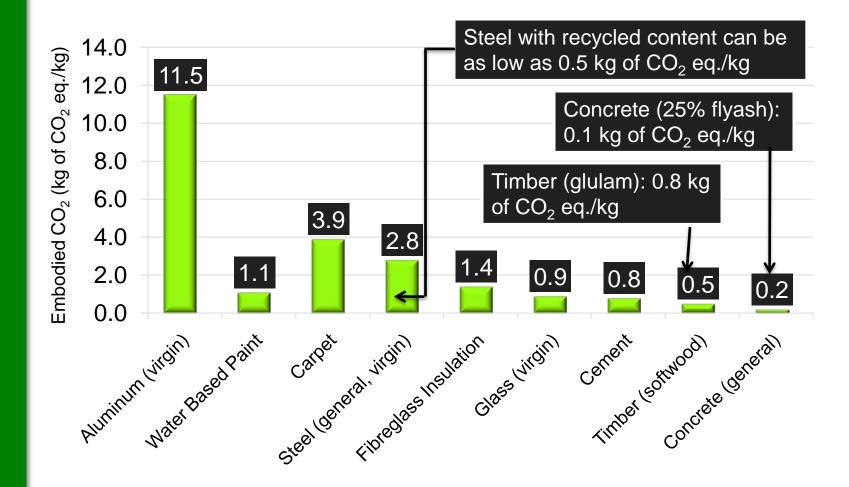

 <u>Initial Embodied Energy</u>: Non-renewable energy consumed in the acquisition of raw materials, their processing, manufacturing, transportation to site, and construction

<u>Recurring Embodied Energy</u>: Non-renewable energy consumed to maintain, repair, restore, refurbish or replace materials, components, or systems during life of building



www.cn-sbs.cssbi.ca

Initial Embodied Energy of Building Materials Per Unit Mass



Source: University of Wellington, NZ, Center for Building Performance Research (2004)

www.cn-sbs.cssbi.ca

Embodied Carbon Dioxide of Building Materials Per Unit Mass

Source: University of Bath, UK, Inventory of Carbon and Energy (2008)

The Life Cycle of a Material

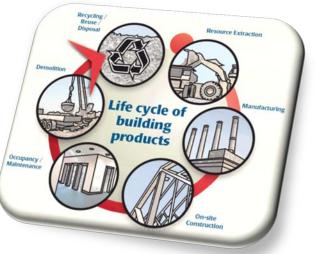
Life-Cycle Assessment (LCA)

 The main goal of a LCA is to quantify energy and material use as well as other environmental parameters at various stages of a product's life-cycle including: resource extraction, manufacturing, construction, operation, and post-use disposal

Life-Cycle Inventory (LCI) Database

 A database that provides a cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with producing a material. This database is a critical component of a Life-Cycle Assessment

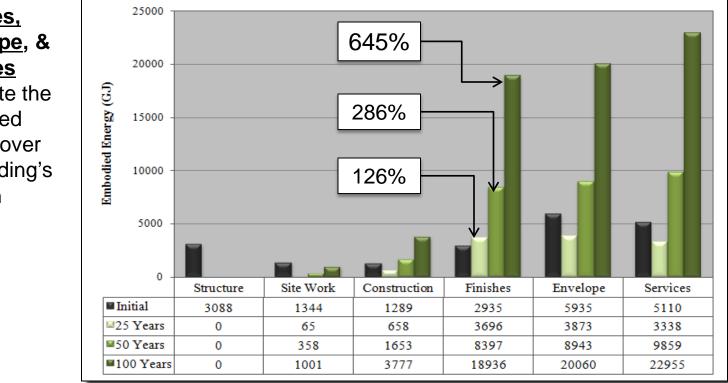
Life Cycle Assessment Methodology


Embodied Energy

<u>ATHENA® Impact Estimator for Buildings</u>

 The only North American specific software tool that evaluates whole buildings and assemblies based on internationally recognized LCA methodology

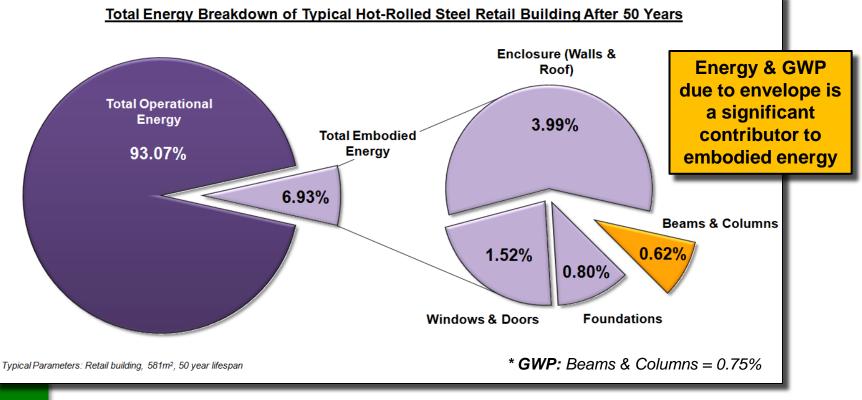
- Non-profit organization that has been around for more than 10 years
- One of the most comprehensive LCI databases in the world with over \$2 million spent on database development
- Considers the life-cycle impacts of:
- Material manufacturing including resource extraction and recycled content
- ✓ Related transportation
- ✓ On-site construction
- Regional variation in energy use, transportation, and other factors
- ✓ Building type and assumed lifespan
- ✓ Maintenance, repair, and replacement effects
- ✓ Demolition and disposal
- ✓ Operating energy emissions and pre-combustion effects



Source: The ATHENA Institute http://www.athenasmi.org/tools/impactEstimator/index.html

Energy in Common Building Components

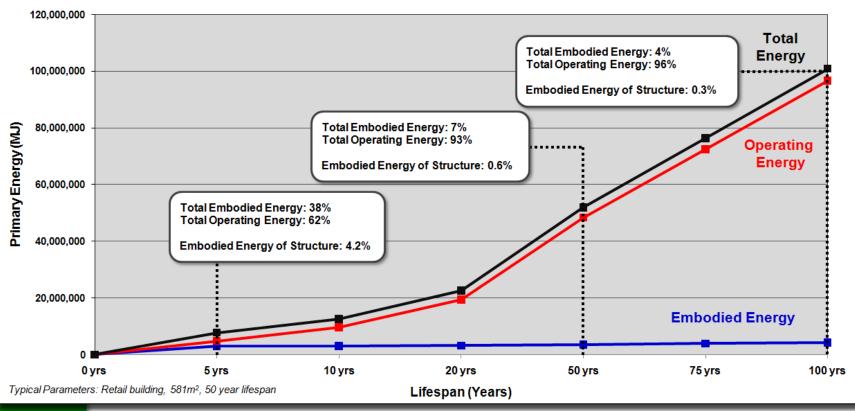
Initial Embodied Energy vs. Recurring Embodied Energy of a Typical Canadian Office Building Constructed from Wood


Finishes, Envelope, & Services dominate the embodied energy over the building's lifespan

Source: Cole, R. & Kernan, P. (1996). Life-Cycle Energy Use in Office Buildings. Building and Environment, 31 (4), 307-317

Orders of Environmental Impact

<u>Total Energy Breakdown of Typical Hot-Rolled Steel Retail</u> <u>Building After 50 Years</u> (other building types are similar)



www.cn-sbs.cssbi.ca

Orders of Environmental Impact

Primary Energy Consumption vs. Time for Hot-Rolled Steel Retail Building (other building types are similar)

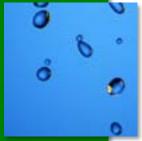
Primary Energy Consumption vs. Time for Typical Hot-Rolled Steel Retail Building

Source: Kevin Van Ootegham

www.cn-sbs.cssbi.ca

Embodied Energy Findings

In conventional buildings, the <u>building envelope</u> (walls and roof), <u>building services</u>, and <u>building finishes</u> contribute the most towards the total <u>embodied</u> life-cycle energy (and total embodied GWP) when looking at the Embodied Energy of the Entire Building, including Structure.


To lower GHG, choice of materials needs to reflect: -issues of **DURABILITY**

- ability of material to assist **PASSIVE DESIGN**
- local sourcing to reduce **TRANSPORTATION**

- Cradle to Cradle concepts

- ability of material to be 1st **REUSED** and 2nd RECYCLED

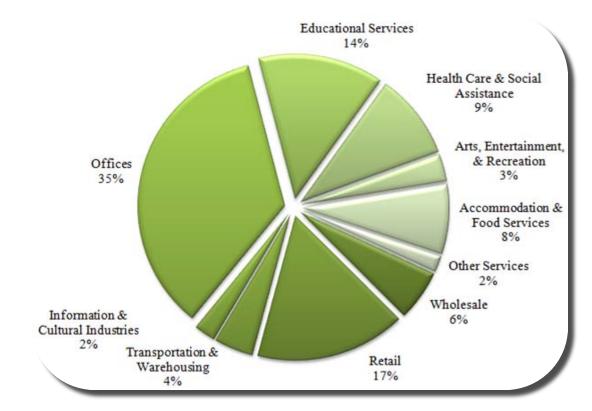
Materiality

c36 c3

walls

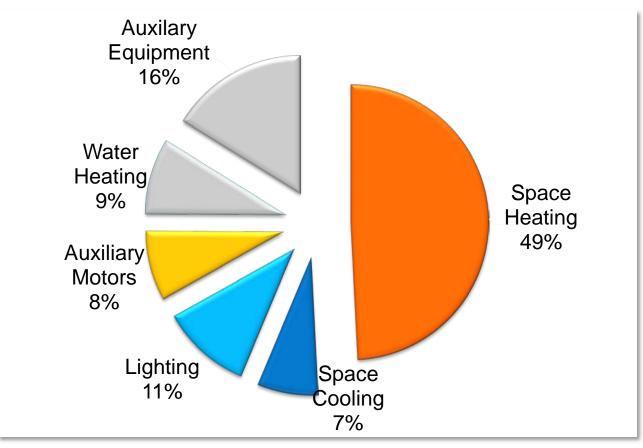
roofs

site


horizontal

Energy Use in Buildings: Operating Energy

Amount of energy that is consumed by a building to satisfy the demand for heating, cooling, lighting, ventilation, equipment, etc.

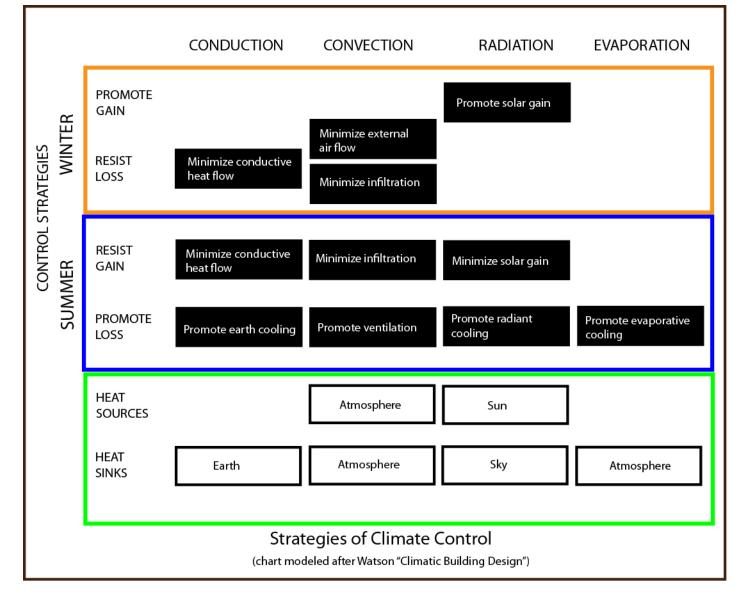

<u>Total Commercial/Institutional Secondary Energy</u> <u>Use by Activity Type in Canada (2006)</u>

Source: Natural Resources Canada, 2006

Energy Use in Buildings: Operating Energy

Source: Natural Resources Canada, 2006

Four Key Steps – IN ORDER:


#1 - Reduce loads/demand first (conservation, passive design, daylighting, shading, orientation, etc.)

#2 - **Meet loads efficiently and effectively** (energy efficient lighting, high-efficiency MEP equipment, controls, etc.)

#3 - **Use renewables to meet energy needs** (doing the above steps *before* will result in the need for much smaller renewable energy systems, making carbon neutrality achievable.)

#4 - **Use purchased Offsets** as a *last resort* when all other means have been looked at on site, or where the scope of building exceeds the site available resources.

Begin with Passive Strategies for Climate Control to Reduce Energy Requirements

HEATING

COOLING

Carbon Reduction: The Tier Approach

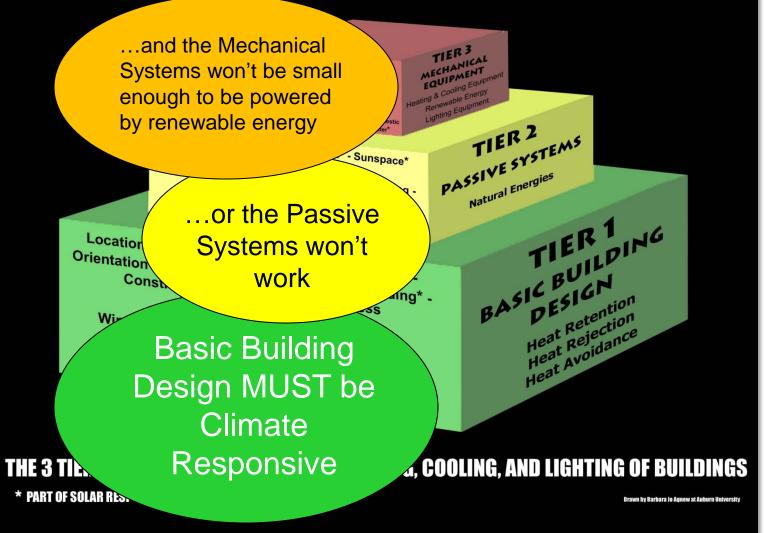
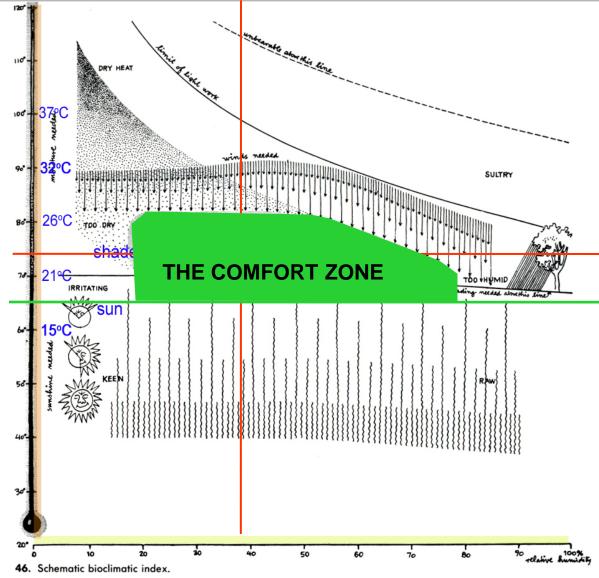



Image: Norbert Lechner, "Heating, Cooling, Lighting"

Designing to the Comfort Zone vs. Comfort Point:

This famous illustration is taken from "Design with Climate", by Victor Olgyay, published in 1963.

This is the finite point of expected comfort for 100% mechanical heating and cooling.

To achieve CN, we must work within the broader area AND DECREASE the "line" to 18C – point of calculation of heating degree days.

Passive Bio-climatic Design: COMFORT ZONE

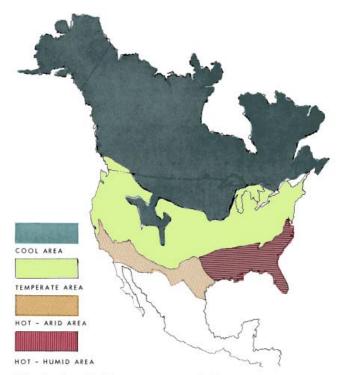
Comfort expectations may have to be reassessed to allow for the wider "zone" that is characteristic of buildings that are not exclusively controlled via mechanical systems.

Creation of new "**buffer spaces**" to make a hierarchy of comfort levels within buildings.

Require **higher occupant involvement** to adjust the building to modify the temperature and air flow.

Climate as the Starting Point for a Climate Responsive Design

North American Bio-climatic Design:

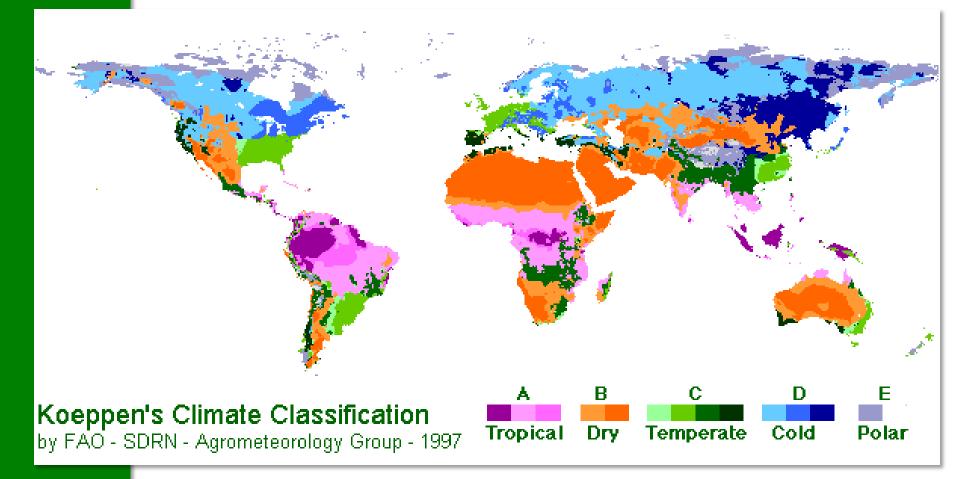

Design must first acknowledge regional, local and microclimate impacts on the building and site.

COLD

TEMPERATE

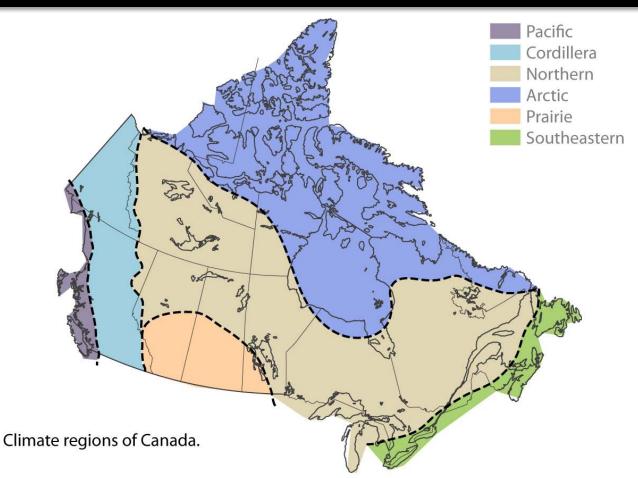
HOT-ARID

HOT-HUMID

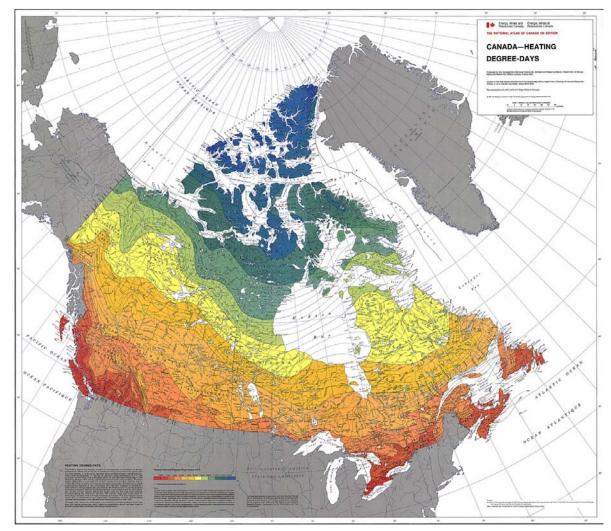


11. Regional climate zones of the North American continent.

Image: 1963 "Design With Climate", Victor Olgyay.


Global Bio-climatic Design:

Design must first acknowledge regional, local and microclimate impacts on the building and site.



The climate regions of Canada

Even within Canada, there exist variations in climate, enough to require very different envelope design practices and regulations. This mostly concerns insulation and water penetration, as well as humidity concerns.

Heating and Cooling Degree Days

This map shows the annual sum of heating degree days (an indicator of building heating needs). Data for period 1941 to 1970. **Determine if the climate is** *heating* **or** *cooling* **dominated** ...this will set out your primary strategy.

The Goal is Reduction

CLIMATE AS THE STARTING POINT FOR RETHINKING ARCHITECTURAL DESIGN

Bio-climatic Design: HOT-ARID

Where very high summer temperatures with great fluctuation predominate with dry conditions throughout the year. Cooling degrees days greatly exceed heating degree days.

RULES:

- SOLAR AVOIDANCE: keep DIRECT SOLAR GAIN out of the building

- avoid daytime ventilation
- promote nighttime flushing with cool evening air
- achieve daylighting by reflectance and use of LIGHT non-heat absorbing colours
- create a cooler MICROCLIMATE by using light / lightweight materials
- respect the DIURNAL CYCLE
- use heavy mass for walls and DO NOT INSULATE

Traditional House in Egypt

Bio-climatic Design: HOT-HUMID

Where warm to hot stable conditions predominate with high humidity throughout the year. Cooling degrees days greatly exceed heating degree days.

RULES:

- **SOLAR AVOIDANCE** : large roofs with overhangs that shade walls and to allow windows open at all times

- PROMOTE VENTILATION

- USE LIGHTWEIGHT MATERIALS that do not hold heat and that will not promote condensation and dampness (mold/mildew)

- eliminate basements and concrete
- use STACK EFFECT to ventilate through high spaces
- use of COURTYARDS and semi-enclosed outside spaces
- use WATER FEATURES for cooling

House in Seaside, Florida

Bio-climatic Design: TEMPERATE

The summers are hot and humid, and the winters are cold. In much of the region the topography is generally flat, allowing cold winter winds to come in form the northwest and cool summer breezes to flow in from the southwest. **The four seasons are almost equally long.**

RULES:

- BALANCE strategies between COLD and HOT-HUMID
- maximize flexibility in order to be able to modify the envelope for varying climatic conditions
- understand the natural benefits of SOLAR ANGLES that shade during the warm months and allow for heating during the cool months

IslandWood Residence, Seattle, WA

Bio-climatic Design: COLD

Where **winter** is the dominant season and concerns for conserving heat predominate all other concerns. Heating degree days greatly exceed cooling degree days.

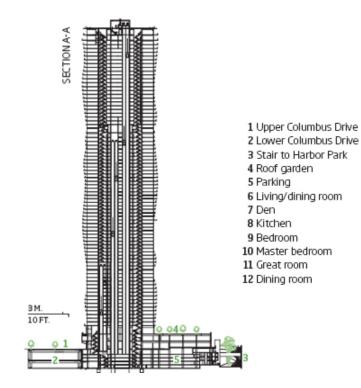
RULES:

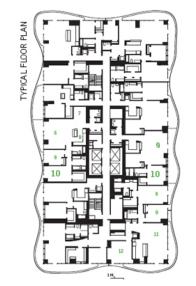
- First INSULATE
- exceed CODE requirements (DOUBLE??)
- minimize infiltration (build tight to reduce air changes)
- Then INSOLATE

- ORIENT AND SITE THE BUILDING PROPERLY FOR THE SUN

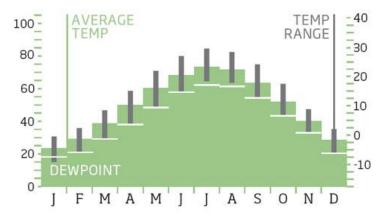
- maximize south facing windows for easier control

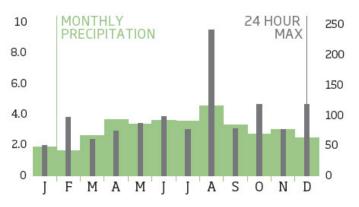
- fenestrate for **DIRECT GAIN**
- apply **THERMAL MASS** inside the building envelope to store the FREE SOLAR HEAT
- create a sheltered MICROCLIMATE to make it LESS cold



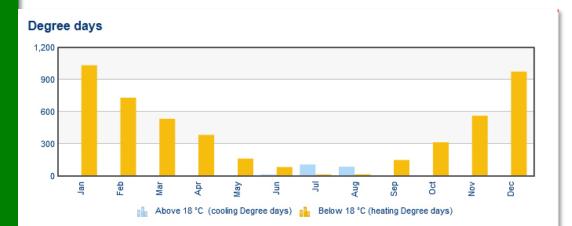

YMCA Environmental Learning Centre, Paradise Lake, Ontario

The Controversial "Cover" of Greensource Magazine


A "sustainable" Chicago residential skyscraper – going for LEED



TEMPERATURES & DEW POINTS FAHRENHEIT/CELSIUS



PRECIPITATION INCHES/MILLIMETERS

Heating degree days 3,582 °C Cooling degree days 417°C

Buildings that are purporting to be "sustainable" routinely ignore key issues of detailing to achieve energy efficiency – in this building, continuous thermal bridges at every slab edge and 90% wall glazing – albeit 6 different types to respond to varying conditions that are created by the uneven balconies.

Winnipeg

Degree-day

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Above 18 °C (cooling Degree days)	0	0	0	0	1	14	108	88	3	O	0	0
Below 18 °C (heating Degree days)	1033	731	534	385	164	85	16	16	150	315	564	976
Above 24 °C	0	0	O	0	0	0	7	4	0	0	0	0
Above 15 °C	0	0	0	3	13	49	188	168	22	0	0	0
Above 10 °C	0	0	0	30	105	172	341	321	116	19	0	0
Above 5 °C (Growing Degree days)	0	0	23	84	241	320	496	476	244	107	12	0
Above 0 °C	0	22	104	180	395	470	651	631	393	243	60	4
Below 0 °C	475	231	80	25	0	0	0	0	0	0	84	42
Below 5 °C	630	354	154	79	1	0	0	0	1	19	186	573
Below 10 °C	785	499	286	175	20	2	0	0	23	86	324	728
Below 15 °C	940	644	441	298	83	30	3	3	79	222	474	88

Cooling Degree Days 214 °C

Heating Degree Days 4,969 °C

http://www.theweathernetwork.com/statistics/degreedays/cl5023262

Locate Comprehensive Climate Data

http://www.energy-design-tools.aud.ucla.edu/

Climate Consultant 5 is a free tool available from the above address.

You will need to download .epw climate data for your city from this website

http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data.cfm

Choose Comfort Model

- Buildings are designed for their use, occupancy or occupants
- Normally it is the people that need to be comfortable in doing their tasks, not the building
- Some uses can accommodate a much higher range of temperatures than others
- Decide if using a fully automated heating AND cooling system
- Can the building **eliminate an A/C system** due to climate?
- Can the building **use passive solar to heat** the building?
- Can the building **use passive ventilation** to cool the building?
- Can the building **take advantage of daylight** to light the building?

Choose Comfort Model

ASHRAE Handbook of Comfort Fundamentals 2005

For people dressed in normal winter clothes,

Effective Temperatures of 68°F (20°C) to 74°F (23.3°C) (measured at 50% relative humidity), which means the temperatures decrease slightly as humidity rises.

- The upper humidity limit is 64°F (17.8°C) Wet Bulb and a lower Dew Point of 36F (2.2°C).
- If people are dressed in light weight summer clothes then this comfort zone shifts 5°F (2.8°C) warmer.

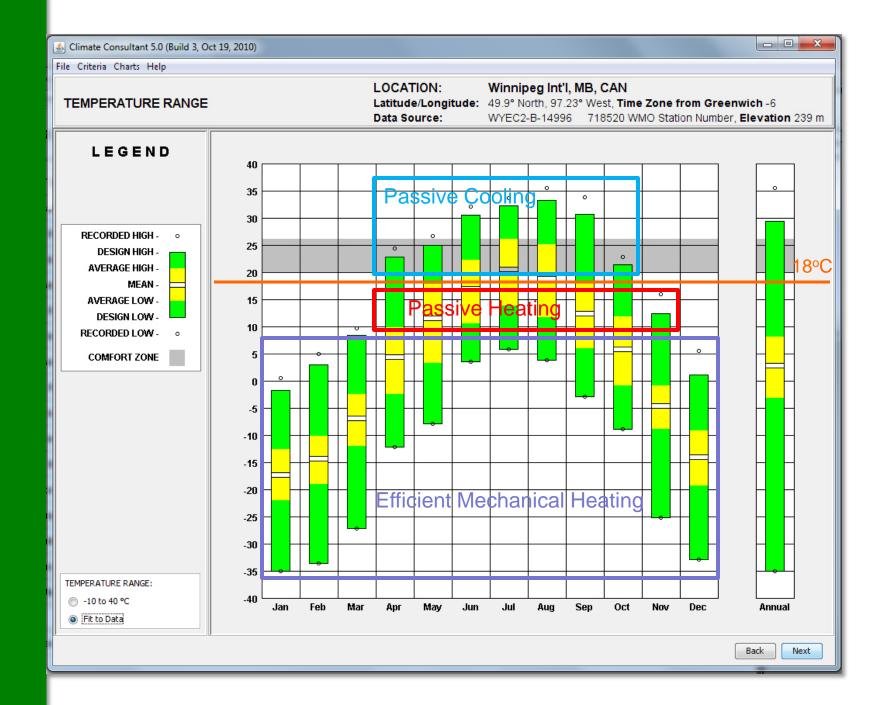
ASHRAE Standard 55-2004 Using Predicted Mean Vote Model

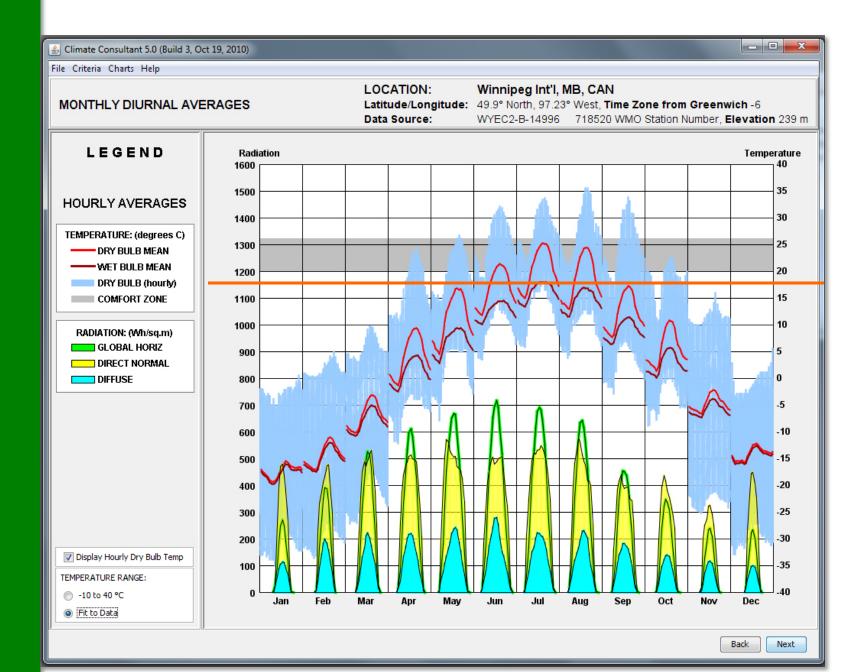
- Thermal comfort is based on dry bulb temperature, clothing level (clo), metabolic activity (met), air velocity, humidity, and mean radiant temperature.
- Indoors it is assumed that mean radiant temperature is close to dry bulb temperature.
- The zone in which most people are comfortable is calculated using the PMV model.
- In **residential settings** people adapt clothing to match the season and feel comfortable in higher air velocities and so have wider comfort range than in buildings with centralized HVAC systems.

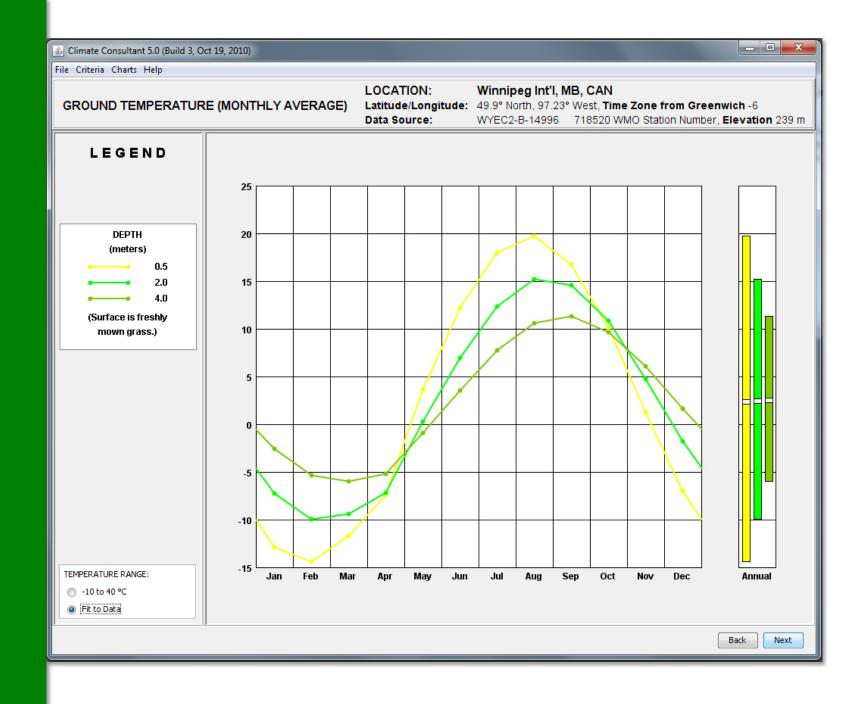
Adaptive Comfort Model in ASHRAE Standard 55-2004

In naturally ventilated spaces where occupants can open and close windows, their thermal response will depend in part on the outdoor climate, and may have a wider comfort range than in buildings with centralized HVAC systems.

- This model assumes occupants adapt their clothing to thermal conditions, and are sedentary.
- <u>There must be no mechanical Cooling System</u>, so this method does not apply if a Mechanical Heating System is in operation.
- The ability to completely eliminate a Mechanical Cooling System has great potential for Carbon savings, but comfort must be maintained passively.

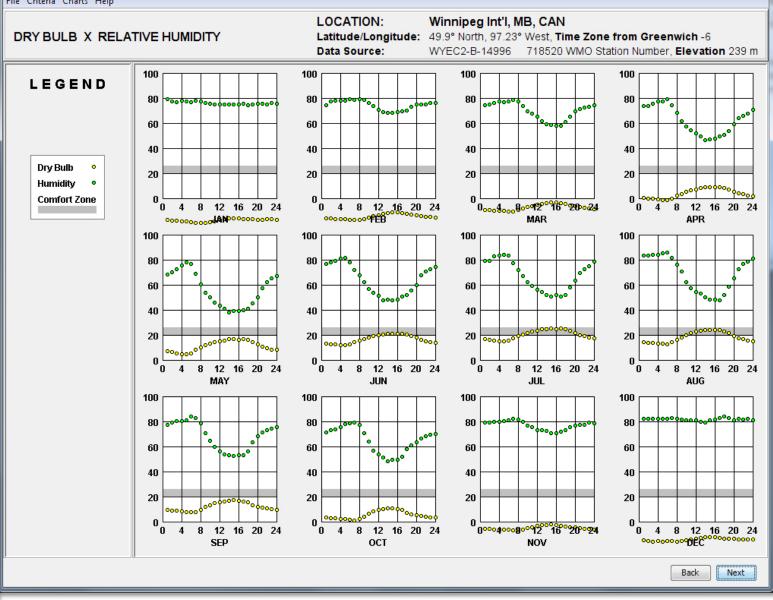

Climate Data for Winnipeg

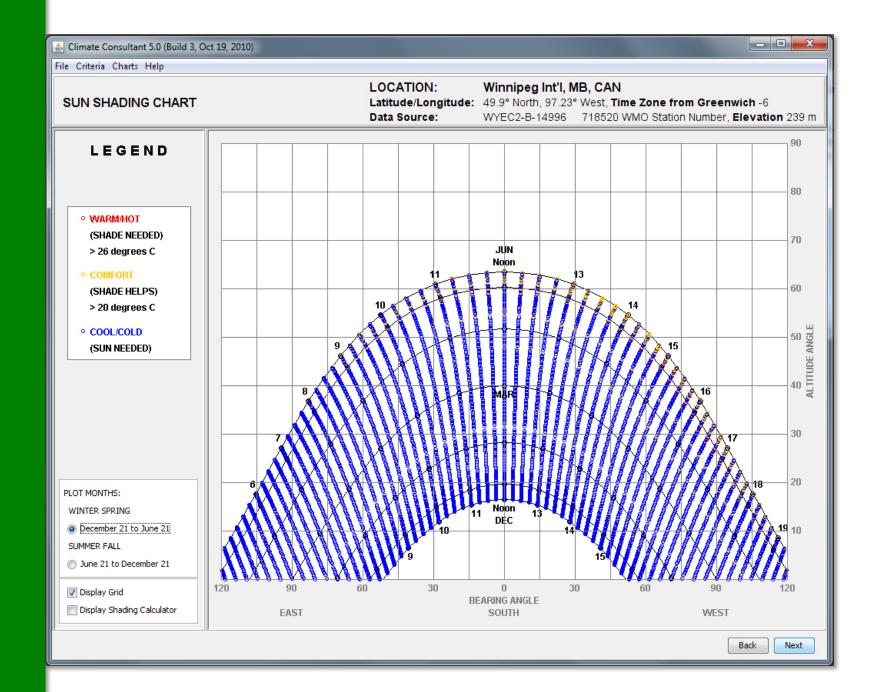

Sclimate Consultant 5.0 (Build 3, Oct 19, 2010)

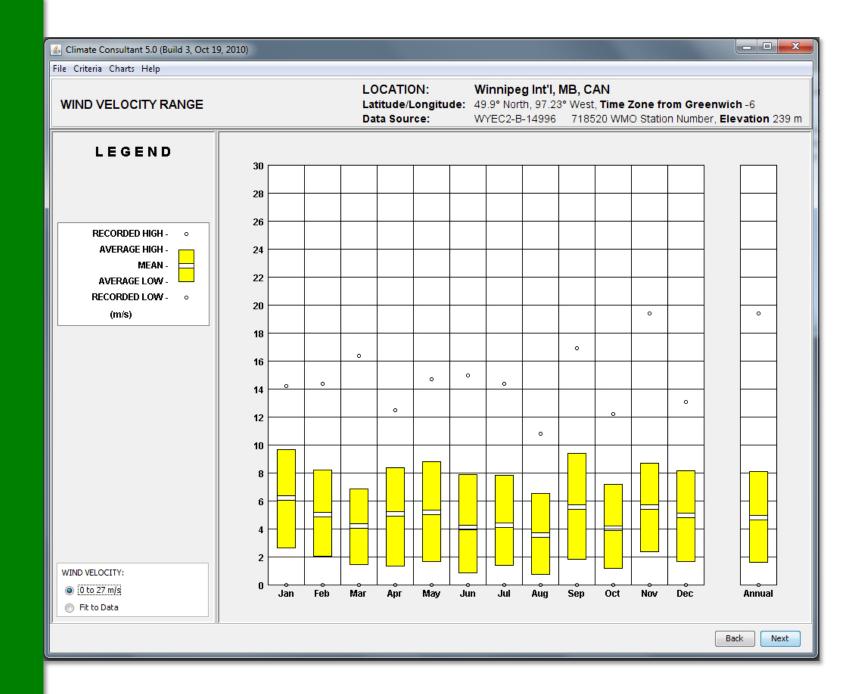

File Criteria Charts Help

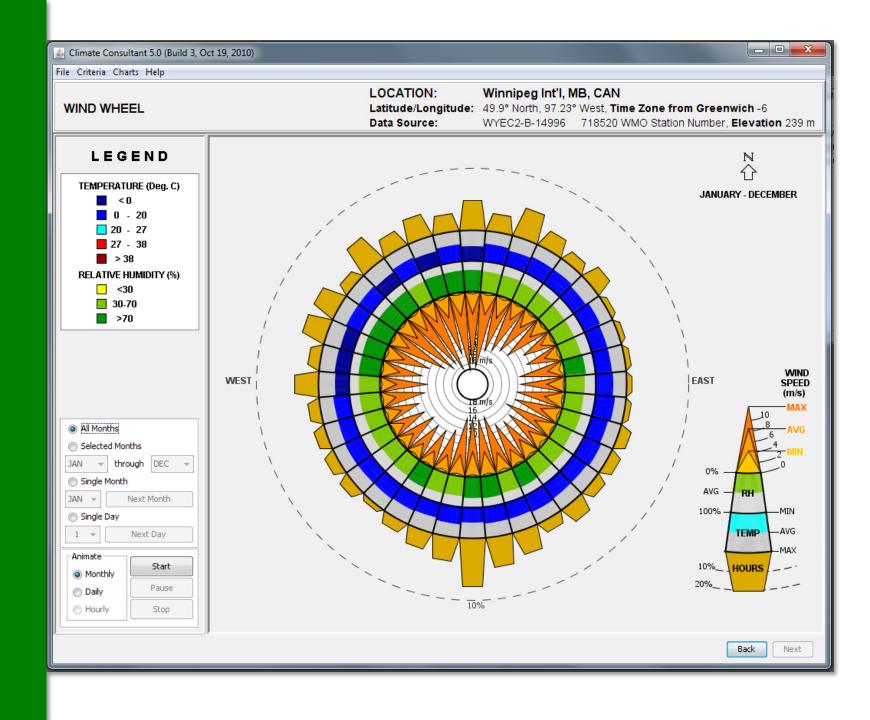
WEATHER DATA SUMMARY			LOC			18/1							
WEATHER DATA SUMMARY			LOCATION: Latitude/Longitude: Data Source:			Winnipeg Int'I, MB, CAN 49.9° North, 97.23° West, Time Zone from Greenwich -6 WYEC2-B-14996 718520 WMO Station Number, Elevation 239						n 239 m	
MONTHLY MEANS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	
Global Horiz Radiation (Avg Hourly)	197	290	369	417	461	440	474	430	337	257	176	185	Wh/sq.m
Direct Normal Radiation (Avg Hourly)	389	395	448	458	481	423	477	455	379	358	272	396	Wh/sq.m
Diffuse Radiation (Avg Hourly)	92	148	153	156	163	165	162	157	139	109	93	85	Wh/sq.m
Global Horiz Radiation (Max Hourly)	416	536	736	882	995	959	910	855	764	616	418	341	Wh/sq.m
Direct Normal Radiation (Max Hourly)	868	976	926	1000	1012	989	929	947	907	929	910	901	Wh/sq.m
Diffuse Radiation (Max Hourly)	868	976	926	1000	1012	989	929	947	907	929	910	901	Wh/sq.m
Global Horiz Radiation (Avg Daily Total)	1426	2370	3718	4929	6122	6438	6397	5387	3640	2293	1322	1149	Wh/sq.m
Direct Normal Radiation (Avg Daily Total)	2796	3507	4701	5549	6574	6260	6689	5820	4345	3421	2212	2511	Wh/sq.m
Diffuse Radiation (Avg Daily Total)	700	1229	1584	1887	2217	2444	2236	2016	1530	1000	707	566	Wh/sq.m
Global Horiz Illumination (Avg Hourly)	21612	32630	41694	46922	51850	49612	53326	48532	38136	28831	19648	20034	lux
Direct Normal Illumination (Avg Hourly)	37327	40526	47384	48765	51353	45049	51190	48618	40274	37367	27029	37425	lux
Dry Bulb Temperature (Avg Monthly)	-17	-14	-6	4	11	17	20	18	12	5	-4	-14	degrees C
Dew Point Temperature (Avg Monthly)	-20	-17	-11	-2	1	9	13	11	6	0	-8	-16	degrees C
Relative Humidity (Avg Monthly)	76	74	69	62	55	63	66	67	68	64	76	81	percent
Wind Direction (Avg Monthly)	181	198	145	145	125	173	190	132	185	200	202	198	degrees
Wind Speed (Avg Monthly)	6	5	4	5	5	4	4	3	5	4	5	4	m/s
Ignore values for snow.													
Ground Temperature (Avg Monthly of 3 Depths)	-7	-9	-8	-6	1	7	12	14	13	9	3	-2	degrees C

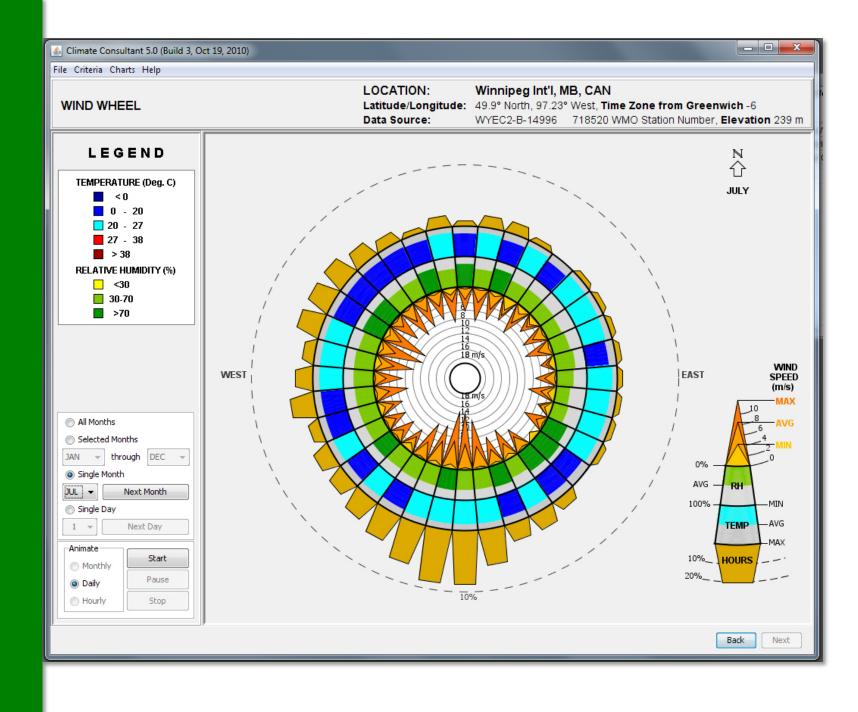
Data taken from Climate Consultant 5

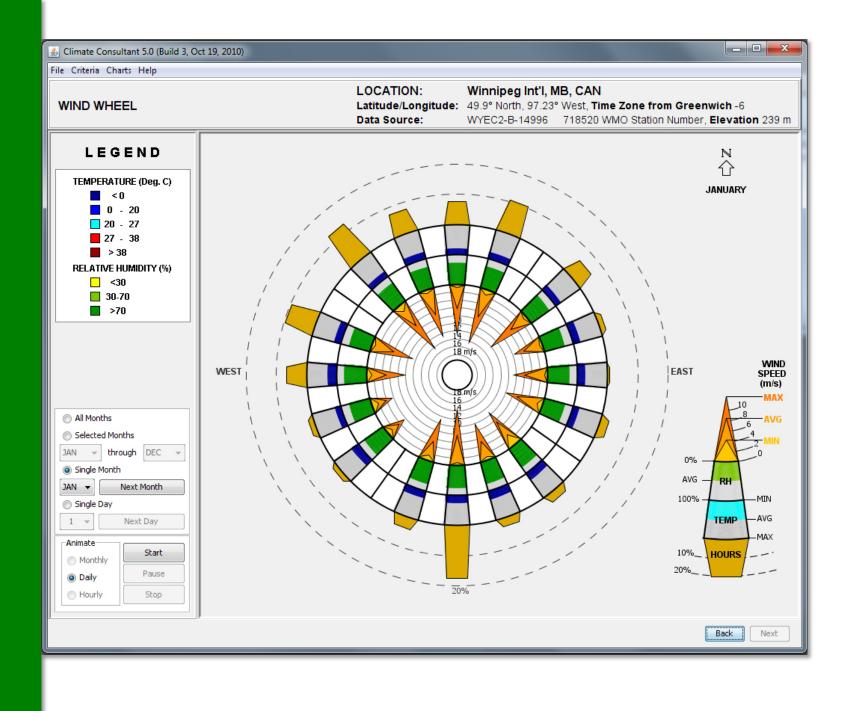




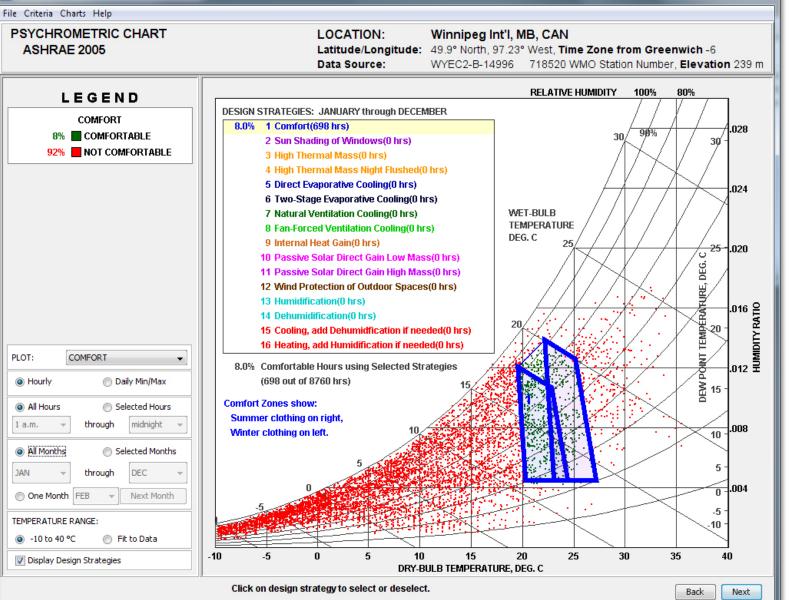

🖆 Climate Consultant 5.0 (Build 3, Oct 19, 2010)


File Criteria Charts Help

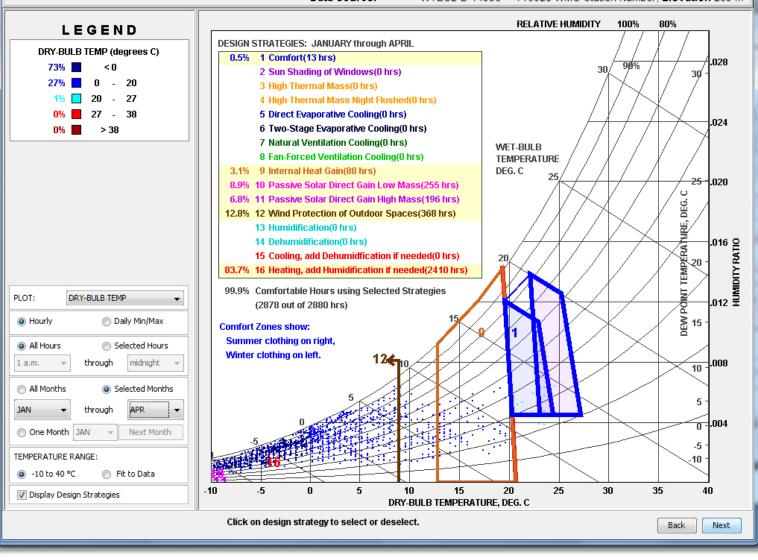




_ D X Climate Consultant 5.0 (Build 3, Oct 19, 2010) File Criteria Charts Help LOCATION: Winnipeg Int'l, MB, CAN SUN SHADING CHART Latitude/Longitude: 49.9° North, 97.23° West, Time Zone from Greenwich -6 Data Source: WYEC2-B-14996 718520 WMO Station Number, Elevation 239 m 90 LEGEND 80 • WARM/HOT (SHADE NEEDED) 70 JÚN. > 26 degrees C Noon COMFORT 60 (SHADE HELPS) 14 > 20 degrees C 50 SIDE ANGLE 40 • COOL/COLD 15 (SUN NEEDED) 30 20 PLOT MONTHS: Noon DEC WINTER SPRING 11 December 21 to June 21 SUMMER FALL Oune 21 to December 21 120 90 30 0 30 60 Display Grid **BEARING ANGLE** Display Shading Calculator EAST SOUTH WEST Back Next



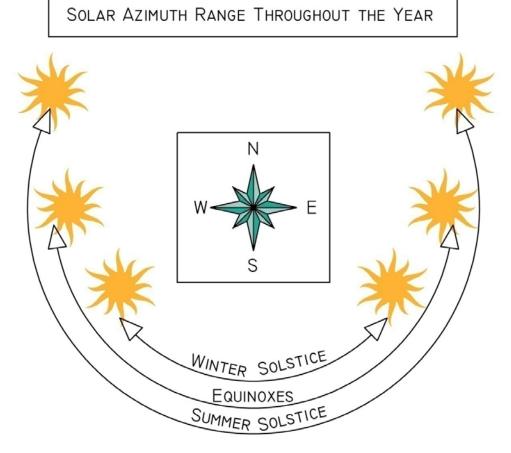
Climate Consultant 5.0 (Build 3, Oct 19, 2010)



_ **D** X

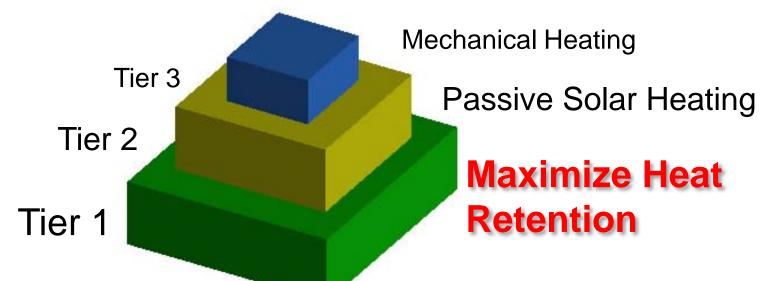
Climate Consultant 5.0 (Build 3, Oct 19, 2010) File Criteria Charts Help PSYCHROMETRIC CHART LOCATION: Winnipeg Int'l, MB, CAN ASHRAE 2005 Latitude/Longitude: 49.9° North, 97.23° West, Time Zone from Greenwich -6 Data Source:

WYEC2-B-14996 718520 WMO Station Number. Elevation 239 m


- 0 X

Climate as the Starting Point for a Climate Responsive Design

PASSIVE STRATEGIES


#1 Architectural Starting Point – Locate the SUN

... and work with it! For FREE HEAT and FREE LIGHT

Reduce loads: Passive Strategies

The tiered approach to reducing carbon for **HEATING**:

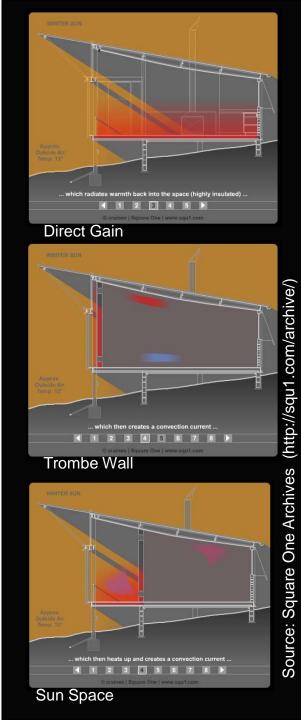
First reduce the overall energy required, then maximize the amount of energy required for mechanical heating that comes from renewable sources.

Passive Heating Strategies: Maximize Heat Retention

- 1. Super insulated envelope (as high as <u>double</u> current standards)
- 2. Tight envelope / controlled air changes
- 3. Provide thermal mass **inside** of thermal insulation to store heat
- Top quality windows with high R-values up to triple glazed with argon fill and low-e coatings on two surfaces

Premise – what you don't "lose" you don't have to create or power.... So make sure that you keep it! (...NEGAwatts)

Passive Heating Strategies: Maximize Solar Gain


- primarily south facing windows
- proportion windows to suit thermal mass and size of room(s)

3 MAIN STRATEGIES:

Direct Gain

Thermal Storage Wall

Sunspace

Passive Solar Opaque Envelope Requirements

- Very tight construction
- Thermal mass on the INSIDE
 - Gypsum board is not of sufficient thickness
- Thickness of 50 to 100mm preferred
- Increased insulation levels
 - Choose insulation that is more "sustainable"
 - Insulation with low embodied energy
 - Insulation from renewable sources

Question: What does a building envelope with 2X insulation look like?

Sustainable Insulation

Super-Insulation

Subsection 12.3.2 - Thermal Insulation

Mininum thermal insulation requirements:

2006- 2011 only	Ontario Sout	th – In force	Ontario North — in force				
	Gas/Oil	Electrical	Gas/Oil	Electrical			
Wall	R19	R29	R24	R29			
Ceiling	R40	R50	R40	R50			
Basement	R12	R19	R12	R19			

And when relying on renewable energy to supplement, often electricity based, the requirements are even higher.

Cold climates in particular are looking at double code insulation levels to reduce heat loss
 This implies choosing either more effective insulation or

Accommodating thicker insulation in the wall, or a combination of the two strategies

R-Value of Urethane Compared to Other Insulating Products

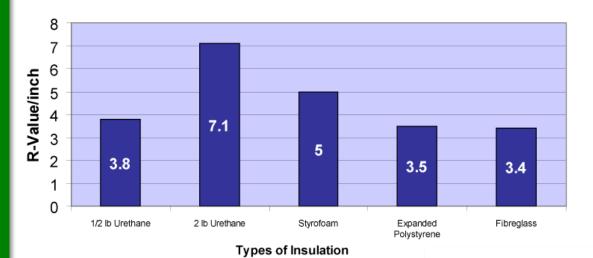



Figure 0.3: A common design of double stud wall. The thermal bridging at the floor and top plate can be seen in this Building America prototype design (Aldrich et al, 2010).

Double stud, increases insulation, high cost, thermal bridges.

Different Rvalues require differentiated approach to accommodating higher insulation values in walls.

lower cost, eliminates thermal bridges.

Building America Special Research Project: High R-Value Enclosures for High Performance Residential Buildings in All Climate Zones

Research Report - 1005 Draft: 29 October 2010 Final: 1 February 2011 Author: John Straube

Contributors: Joseph Lstiburek, Betsy Pettit, Armin Rudd, Christopher Schumacher, Peter Baker, Kohta Ueno, Alex Lukachko, Jonathan Smegal, Aaron Grin, Ken Neuhauser, Cathy Gates

For more information!

http://www.buildingscience.com/documents/reports/rr-1005-building-america-high-r-value-high-performance-residential-buildings-all-climate-zones

Thermal Mass is Critical!

To ensure comfort to the occupants....

People are 80% water so if they are the only thermal sink in the room, they will be the target.

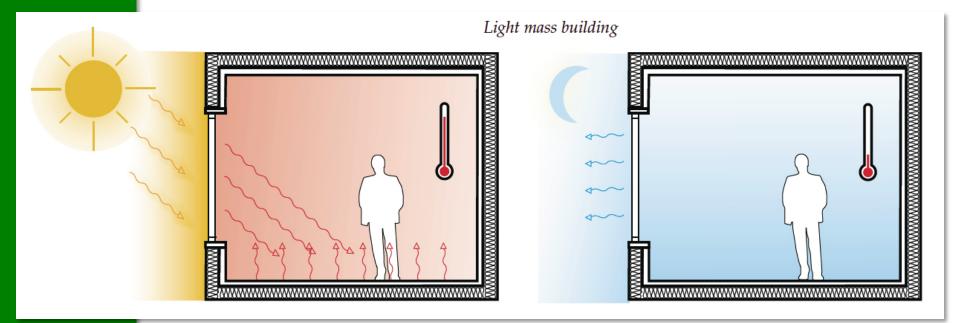
And to store the FREE energy for slow release distribution....

Aldo Leopold Legacy Center: Concrete floors complement the insulative wood walls

Thermal mass is the "container" for free heat...

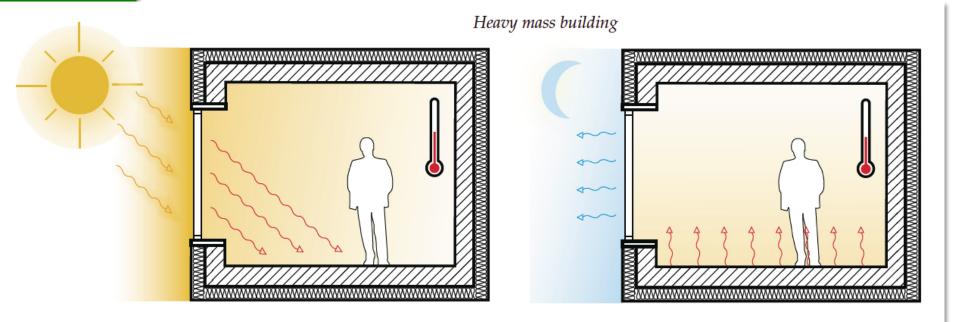
If you "pour" the sun on wood, it is like having no container at all.

Just like water, free solar energy needs to be stored somewhere to be useful!



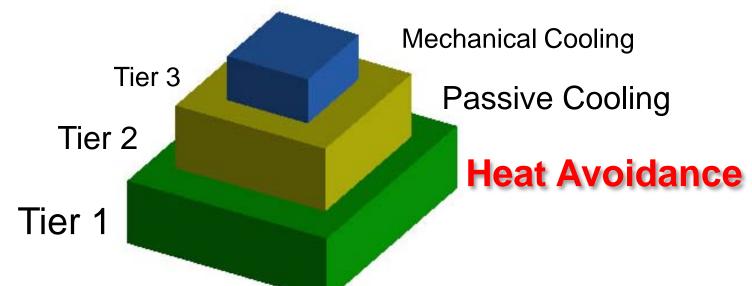
Thermal mass runs counter to the standard method of residential construction in Canada.

Thermal mass is needed on the INSIDE of the envelope – as floor and/or walls.



Light Mass Building

Wide swings of temperature from day to night
 Excess heat absorbed by human occupants
 Uncomfortably cold at night

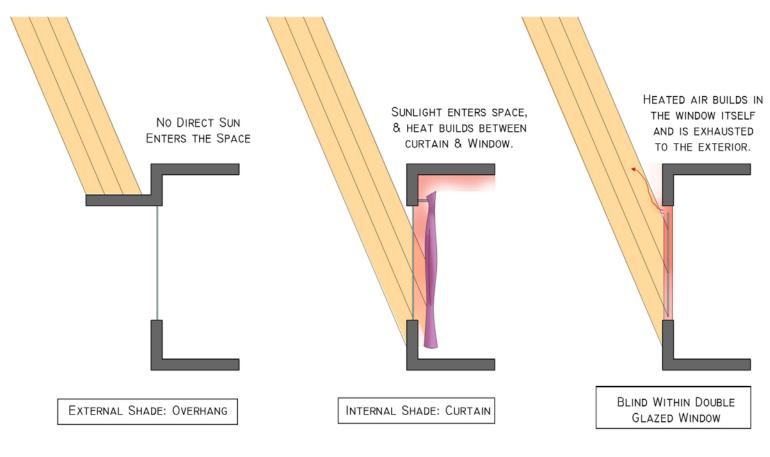

Heavy Mass Building

Glass needs to permit entry of solar radiation
 Also need insulating blinds to prevent heat loss at night.

Reduce loads: Passive Strategies

The tiered approach to reducing carbon for COOLING:

Maximize the amount of energy required for mechanical cooling that comes from renewable sources.


Passive Cooling Strategies: Heat Avoidance

- shade windows from the sun during hot months
- 2. design materials and plantings to cool the local microclimate
- locate trees and trellis' to shade east and west façades during morning and afternoon low sun

If you don't invite the heat in, you don't have to get rid of it.....

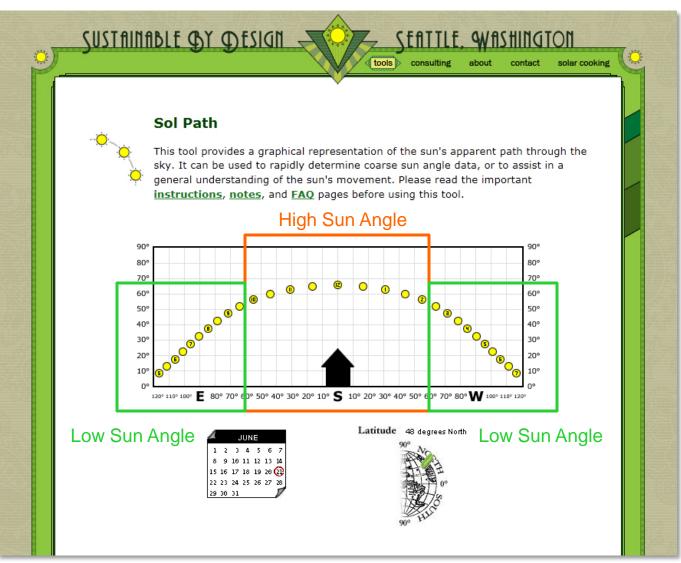
Interior vs Exterior Shades

Once the heat is IN, it is IN!

Internal blinds are good for glare, but not preventing solar gain.

Solar Geometry

The local solar path affects:

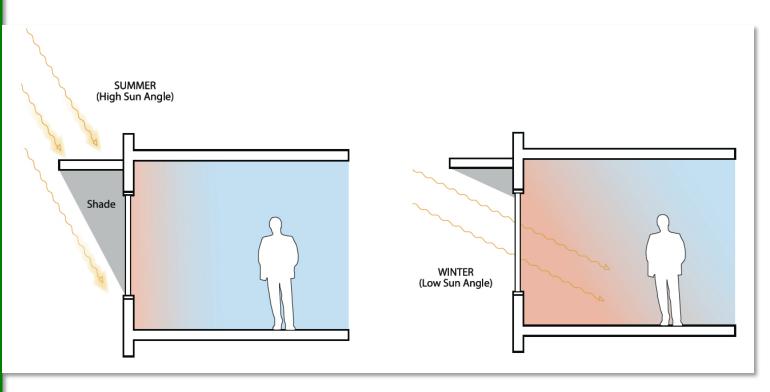

Location of openings for passive solar heating

Design of shading devices for cooling

Means differentiated façade design

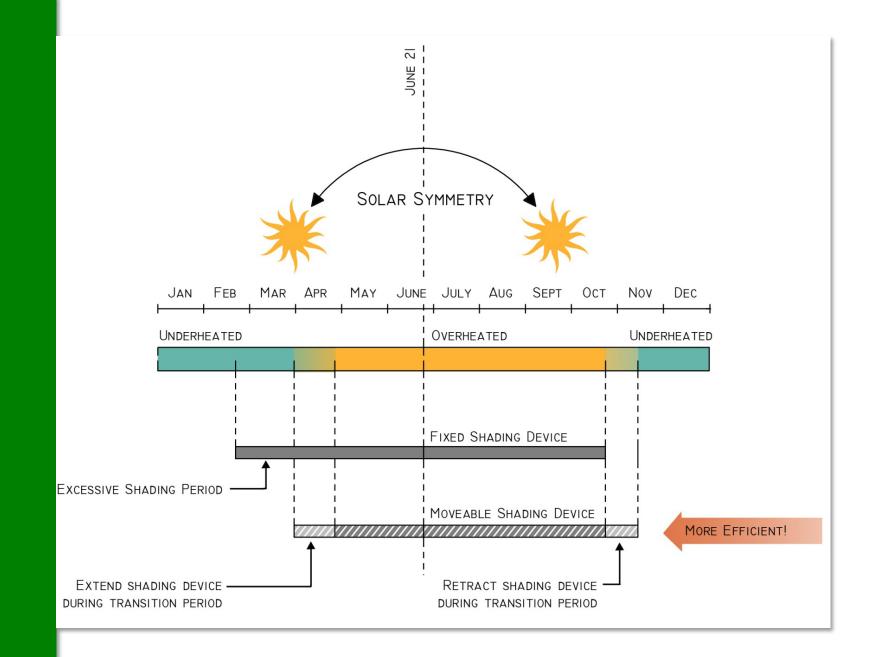
Differentiated Shading Strategies

http://susdesign.com/tools.php

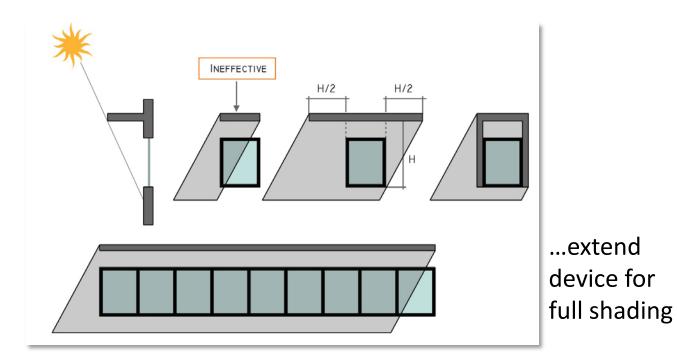

Differentiated façade treatment

Different envelope construction on north, east/west and south

Terasan Gas, Surrey, BC

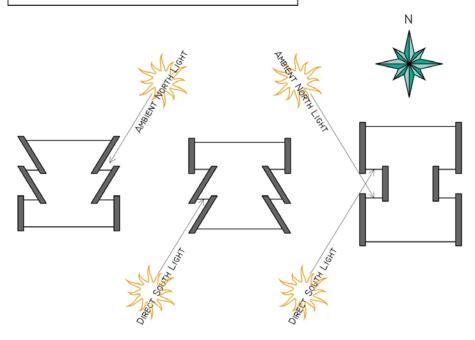


South Façade Strategies



South façade is the easiest to manage as simple overhangs can provide shade in the summer and permit entry in the winter.

➢ Need to design for August condition as June to August is normally a warm period.



East and west façade are both difficult to shade as the sun angles are low and horizontal shades do not work.

AVOID WINDOWS ON THE EAST & WEST FACADE BY SHIFTING THE WINDOWS TO FACE NORTH OR SOUTH:

1. The best
solution by far is to
limit using east and
especially west
windows (as much
as possible in hot
climates)

2. Next best solution is to have windows on the east and west façades face north or south

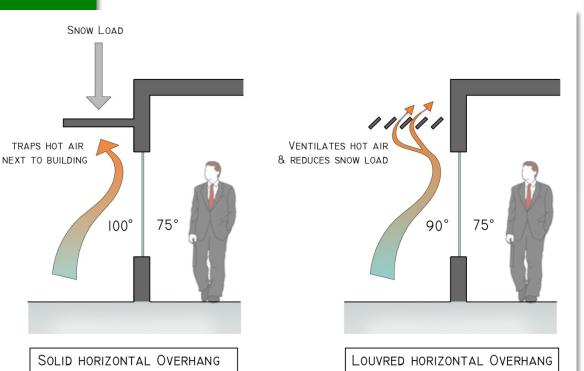
Shading Devices and the Envelope

Can be an extension of the roof

On multi storey buildings normally attached to the envelope

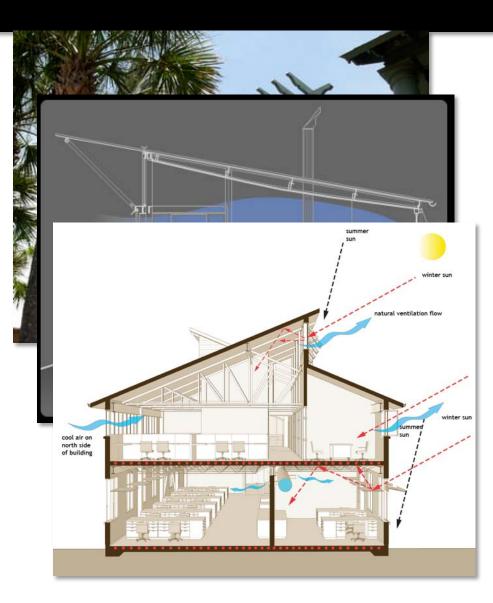
Can be incorporated into the curtain wall

Must contend with snow loading

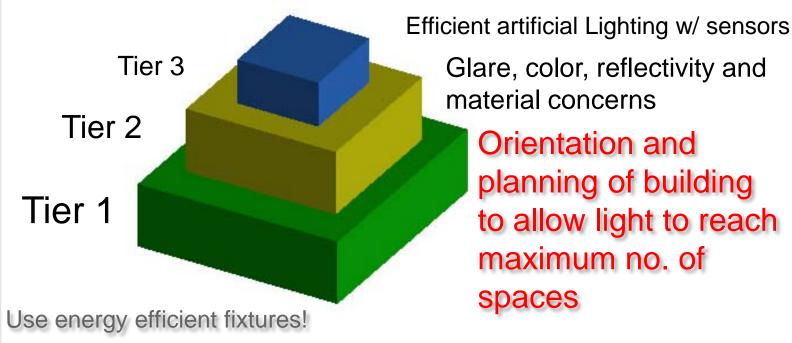

Must be durable and low

maintenance

This one uses ceramic fritted glass that is sloped, to allow some light but shed rain and wet snow.



The above two use louvres or grates that will let snow, rain and wind through.

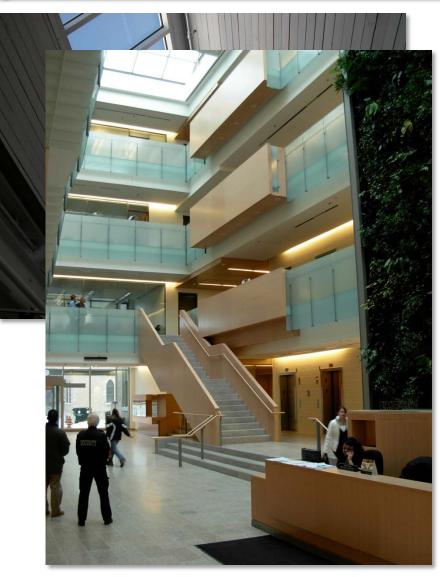

Passive Cooling Strategies - Ventilation:

- design for maximum ventilation
- keep plans as open as possible for unrestricted air flow
- 3. use easily operable windows at low levels with high level clerestory windows to induce stack effect cooling

Reduce loads: Daylighting

The tiered approach to reducing carbon with **DAYLIGHTING**:

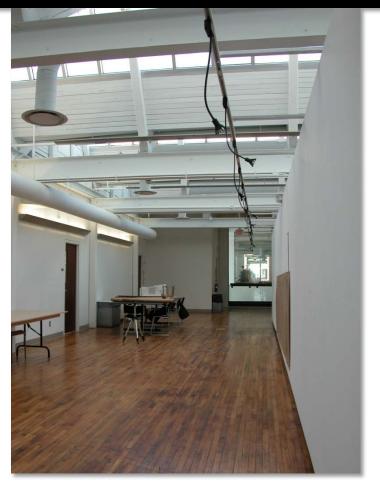
Maximize the amount of energy/electricity required for artificial lighting that comes from renewable sources.


Source: Lechner. Heating, Cooling, Lighting.

Passive Lighting Strategies: Orientation and building planning

- start with solar geometry
- understand context, sky dome, adjacent buildings and potential overshadowing
- be able to differentiate between sunlight (heat) and daylight (seeing)
- understand occupancy/use requirements
- maximize areas served by daylight
- explore different glazing strategies: side, clerestory, top
- consider light shelves and reflected light

Passive Lighting Strategies: Glare, color, reflectivity and materials


- incorporate light dynamics
- avoid glare
- understand the function of material selection; ie.
 reflectivity and surface qualities
- balance color and reflectivity with amount of daylight provided

Passive Lighting Strategies:

- use energy efficient light fixtures (and effectively!)

- use occupant sensors <u>combined with light level</u> <u>sensors</u>
- aim to only have lights
 switch on only when
 daylight is insufficient
- provide electricity via
 renewable means: wind,
 PV, CHP

Lights on due to occupant sensors when there is adequate daylight – WASTES ENERGY!

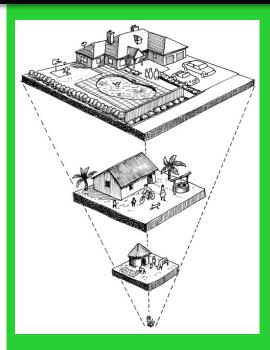
Reduce, Renew, Offset

And, a *paradigm shift* from the recycling 3Rs...

Reduce - build less, protect natural ecosystems, build smarter, build efficiently

Renew - use renewable energy, restore native ecosystems, replenish natural building materials, use recycled and recyclable materials

Offset - compensate for the carbon you can't eliminate, focus on local offset projects


Net impact reduction of the project!

source: www.buildcarbonneutral.org

Smaller is better.

- *Simple!*...less building results in less embodied carbon; i.e. less carbon from materials used in the project, less requirements for heating, cooling and electricity....

- Re-examine the building program to see what is *really* required
- How is the space to be used?
- Can the program benefit from more inventive double uses of spaces?
- Can you take advantage of outdoor or more seasonally used spaces?
- How much building do you *really* need?
- Inference of LIFESTYLE changes

Calculating your "ecological footprint"

... can naturally extend to an understanding of your "carbon footprint"

Material choice matters.

- Material choice can reduce your building's *embodied* carbon footprint.

- Where did the material come from?
- Is it local?
- Did it require a lot of energy to extract it or to get it to your building?
- Can it be replaced at the source?
- Was it recycled or have significant post consumer recycled content?
- Can it be recycled or reused *easily;* i.e. with minimal additional energy?
- Is the material durable or will it need to be replaced (*lifecycle analysis*)?
- Select the right material for the right end use

Foster's GLA – may claim to be high performance, but it uses many high energy materials.

Green on the Grand, Canada's first C-2000 building chose to import special windows from a distance rather than employ shading devices to control solar gain and glare.

Reuse to reduce impact

- Reuse of a building, part of a building or elements reduces the carbon impact by avoidance of using new materials.
- Make the changes necessary to improve the operational carbon footprint of an old building, before building new.
- Is there an existing building or Brownfield site that suits your needs?
- Can you adapt a building or site with minimal change?
- Design for disassembly (Dfd) and eventual reuse to offset future carbon use

The School of Architecture at Waterloo is a reused factory on a remediated Brownfield site.

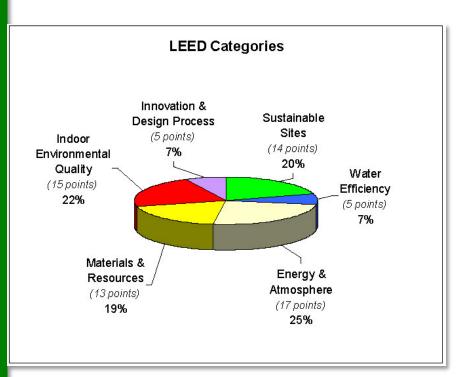
All of the wood cladding at the YMCA Environmental Learning Center, Paradise Lake, Ontario was salvaged from the demolition of an existing building.

Sustainable Design has gone mainstream

as a result of LEED[™]

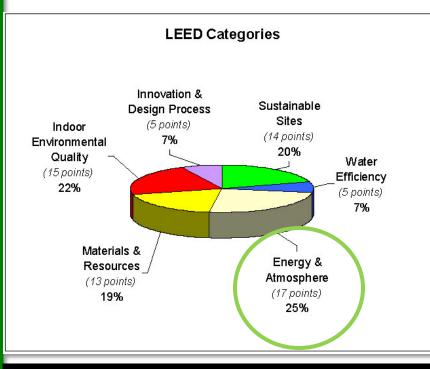
The question remains,

"How effective are current sustainable design practices and rating systems at achieving Greenhouse Gas Reduction?" And the answer is:


"Really, NOT very...

Most LEED[™] Gold and Platinum buildings earn less than 5/17 of the Energy and Atmosphere credits.

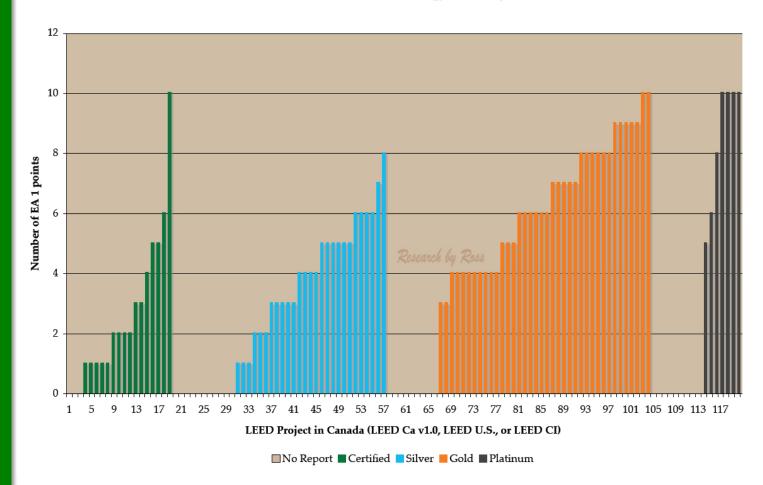
Sadly, there is NO Magic Bullet....


Even current high standards of "Green and High Performance Building" are not targeting significant reduction of Energy and GHG emissions.

Buildings are accredited by the number of points gained: 26 to 32 point is LEED certified; 33 to 38 points is LEED Silver; 39 to 51 is LEED Gold, and; LEED Platinum is awarded to projects with 52 or more points.

Note: information based on LEED NC (not 2009)

Only 25% of the LEED credits are devoted to energy.
Of those, 10/70 are for optimization.


• Maximum reduction is 60%.

 Most LEED buildings earn less than 5 of these credits.....

It would seem that LEED is perhaps not RADICAL enough to be the only means to tackle the Carbon Problem....

LEED and Predicted Energy Credits

Points earned for PREDICTED energy efficiency (EA 1)

Research conducted by Barbara Ross for her M.Arch. Thesis (2009)

Mining LEED[™] for Carbon:

Energy Effective Design and LEED[™] Credits

We will dissect this Platinum + Carbon Neutral Building To see how LEED[™] credits can be used as a spring point to elevate to Carbon Neutral

Comparing Carbon Neutral to LEED[™]

• LEED[™] is a *holistic assessment tool* that looks at the overall sustainable nature of buildings within a prescribed rating system *to provide a basis for comparison* – with the hopes of changing the market

 Projects are ranked from Certified to Platinum on the basis of credits achieved in the areas of Sustainable Sites, Energy Efficiency, Materials and Resources, Water Efficiency, Indoor Environmental Quality and Innovation in Design Process

• LEED[™] does not assess the Carbon value of a building, its materials, use of energy or operation

• Most LEED Gold and Platinum buildings earn a maximum of 5/17 of the Energy and Atmosphere Credits!

Existing Carbon Neutral/Zero Energy Buildings

Picture	e Name	▲ 0w	vner Locati	on Buildin Type	g Floor Area (ft²)	Annual Purchased Energy (kBtu/ft²)
	Aldo Leopol Center	Le	opold undation,	oo, WI Comme office; Interpr Center	etive	-2.02
	Audubon Ce Park	AL		es, CA Interpr Center Park	etive	
	Challengers		hittier Los undation Angel	Recrea es, CA	ation 3,500	-0.0955
	Environmen Center, Son	oma State Sta	noma Rohne ate Park, iversity		ion;	-1.47
	Hawaii Gater Center	En La of Au	tural Kailua ergy HI boratory Hawaii ithority ELHA)	-Kona, Comme office; Interpr Center Assen Other	etive ;	-3.46
	IDeAs Z2 De	Ste	vidand San J ephania CA neda	ose, Comme office	ercial 6,560	-0.00052
	Oberlin Coll Center		oerlin Oberli Ilege	n, OH Higher educat Library Assen Campu	ion; /; ibly;	-4.23
	Science Hou	Mu	ience St. Pa iseum of nnesota	ul, MN Interpr Center		C
		81	project(s)			
	Remove selecte	d project(s) Add/F	Remove column(s)	Download	Help	

The list on <u>http://zeb.buildinggreen.com/</u> has not grown in 2 years.

Aldo Leopold Legacy Center Baraboo, Wisconsin

The Kubala Washatko Architects LEED[™] Platinum 2007

Technical information from Prof. Michael Utzinger, University of Wisconsin-Milwaukee

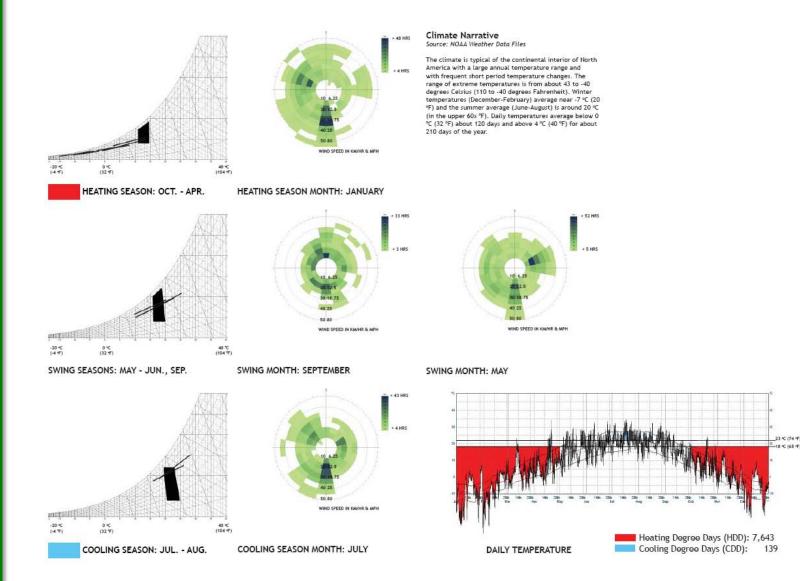
Aldo Leopold Center LEED[™] Analysis

12/14 Sustainable Sites 5/5 Water Efficiency

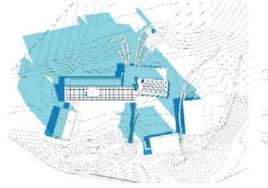
17/17 Energy and Atmosphere

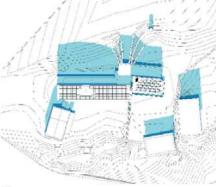
7/13 Materials and Resources15/15 Indoor Environmental Quality5/5 Innovation and Design Process

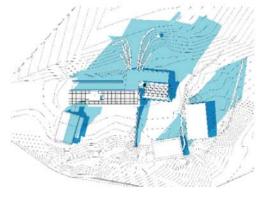
61/69 Total


For more detailed info on the Leopold Center, visit http://www.aldoleopold.org/legacycenter/carbonneutral.html and

http://leedcasestudies.usgbc.org/overview.cfm?ProjectID=946


Leopold Approach to Carbon Neutral Design


- Design a Net Zero (Operating Energy) Building
- Apply Carbon Balance to Building Operation (Ignore Carbon Emissions due to Construction)
- Include Carbon Sequestration in Forests
 Managed by Aldo Leopold Foundation
- Design to LEED[™] Platinum (as well)

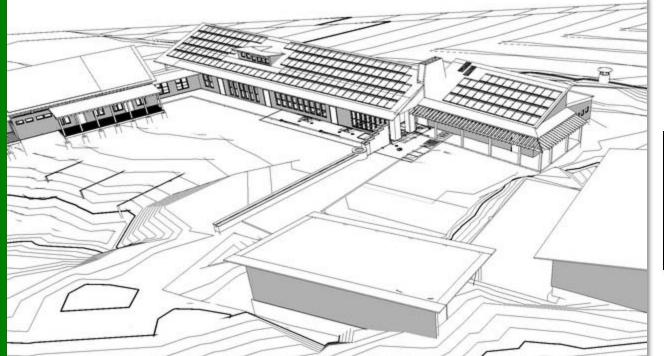

Climate Analysis as the Starting Point

Site Analysis to Determine Solar Potential

9:00 am


3:00 pm

Site Shading Study



Ariel Image from South
Source: _____

N

The South elevation is designed to capture energy.

The North elevation is designed for thermal resistance, daylighting and ventilation.

The buildings were arranged in a U shape around a solar meadow that ensured access to sun for passive solar heating and energy collection.

Architectural Design Strategies

- Start with bioclimatic design
- Program Thermal Zones
- All perimeter zones (no interior zones skin load dominated building)
- Daylight all occupied zones
- Natural ventilation in all occupied zones
- Double code insulation levels
- Passive solar heating
- Shade windows during summer

Energy and Atmosphere, 17 of 17 possible points: EA Credit 1

EA Prerequisite 1, Fundamental Building Systems Commissioning

EA Prerequisite 2, Minimum Energy Performance

EA Prerequisite 3, CFC Reduction in HVAC&R Equipment

EA Credit 1.1a, Optimize Energy Performance, 15% New 5% Existing EA Credit 1.1b, Optimize Energy Performance, 20% New 10% Existing EA Credit 1.2a, Optimize Energy Performance, 25% New 15% Existing EA Credit 1.2b, Optimize Energy Performance, 30% New 20% Existing EA Credit 1.3a, Optimize Energy Performance, 35% New 25% Existing EA Credit 1.3b, Optimize Energy Performance, 40% New 30% Existing EA Credit 1.4a, Optimize Energy Performance, 40% New 35% Existing EA Credit 1.4b, Optimize Energy Performance, 50% New 40% Existing EA Credit 1.5a, Optimize Energy Performance, 55% New 45% Existing EA Credit 1.5b, Optimize Energy Performance, 60% New 50% Existing

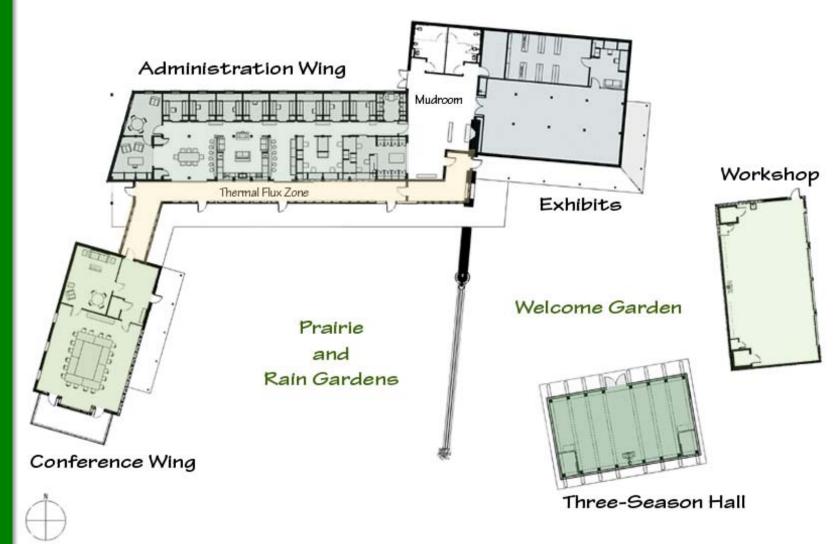
Operating energy

EA Credit 2.1, Renewable Energy, 5%

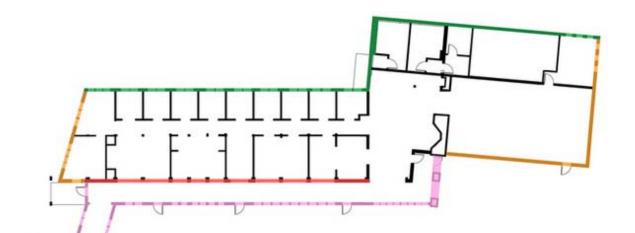
EA Credit 2.2, Renewable Energy, 10%

EA Credit 2.3, Renewable Energy, 20%

EA Credit 3, Additional Commissioning

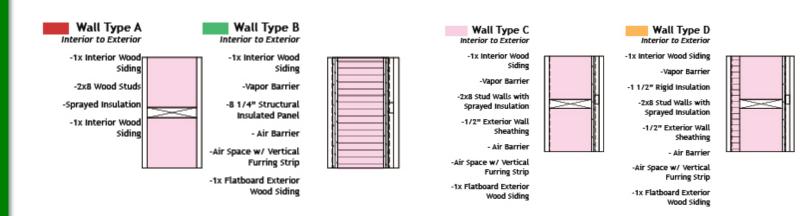

EA Credit 4, Ozone Depletion

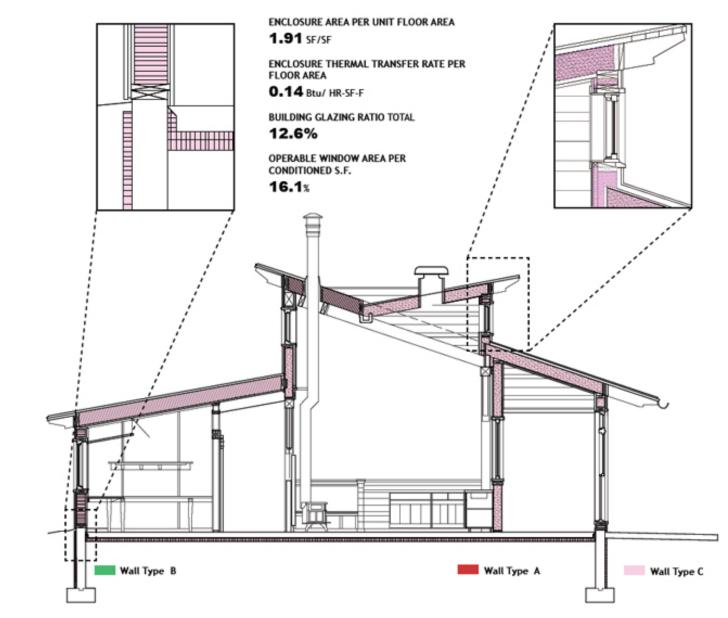
EA Credit 5, Measurement and Verification

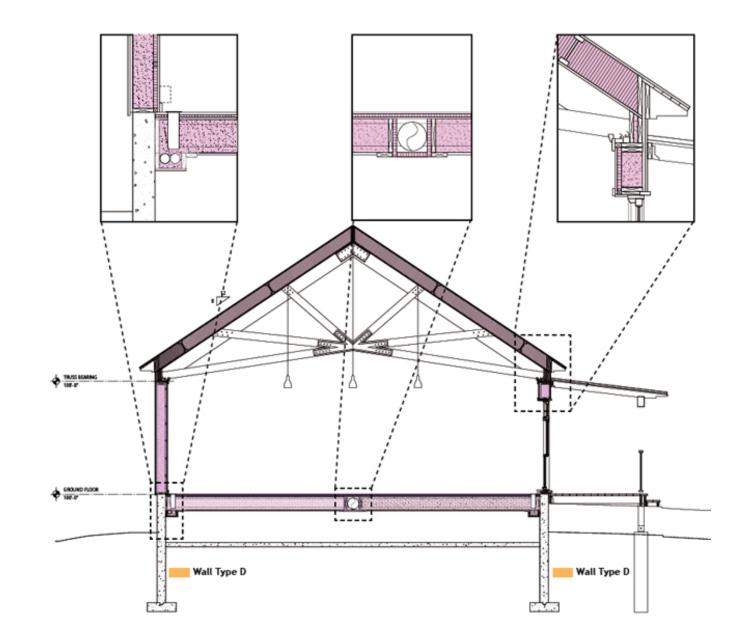

EA Credit 6, Green Power

OPTIMIZE = REDUCTION This needs to be the main area of focus for low Carbon design.

Thermal Zones ~ Perimeter Zones



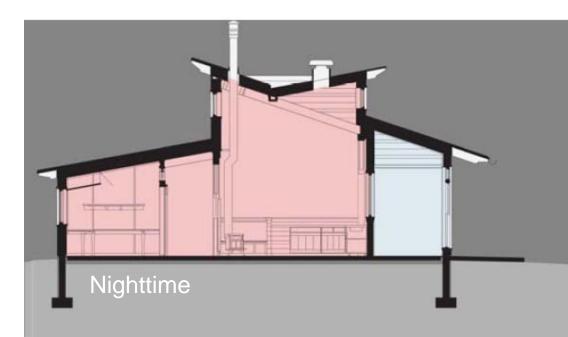

Keep the buildings thin to allow for maximum daylight and use of solar for passive heating with operable windows to make natural ventilation work.

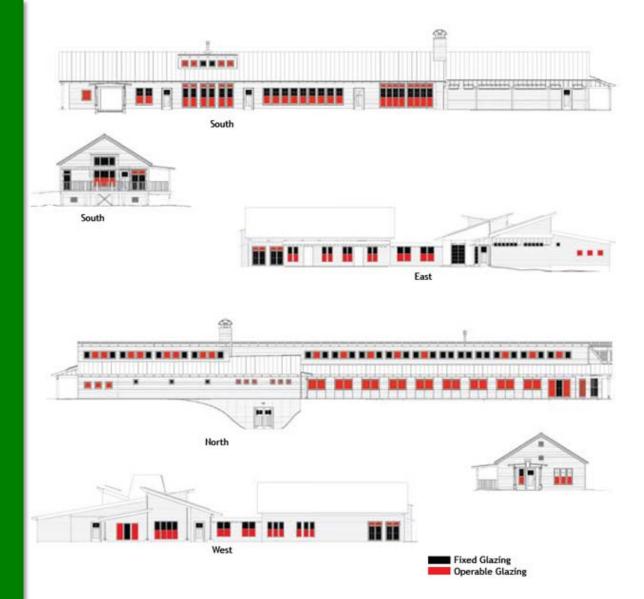

Wall types and insulation levels are varied as a function of orientation and exposure

Lightweight interior wall finishes meant thermal mass was in the exposed concrete floor.

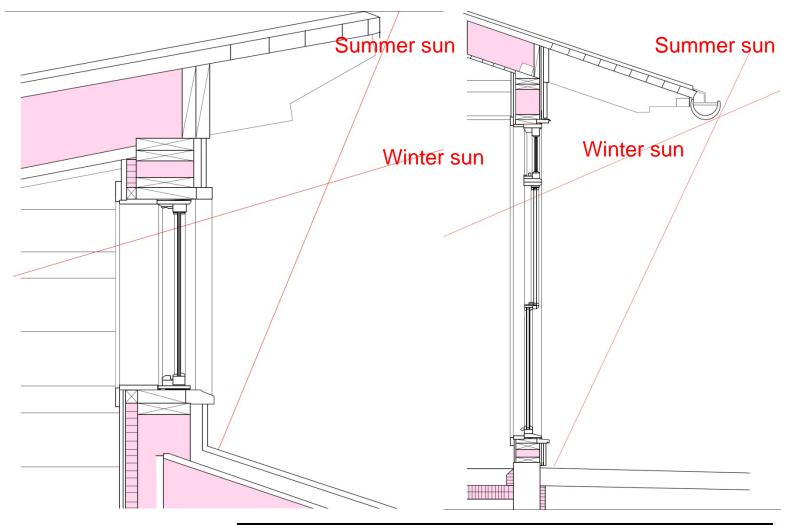


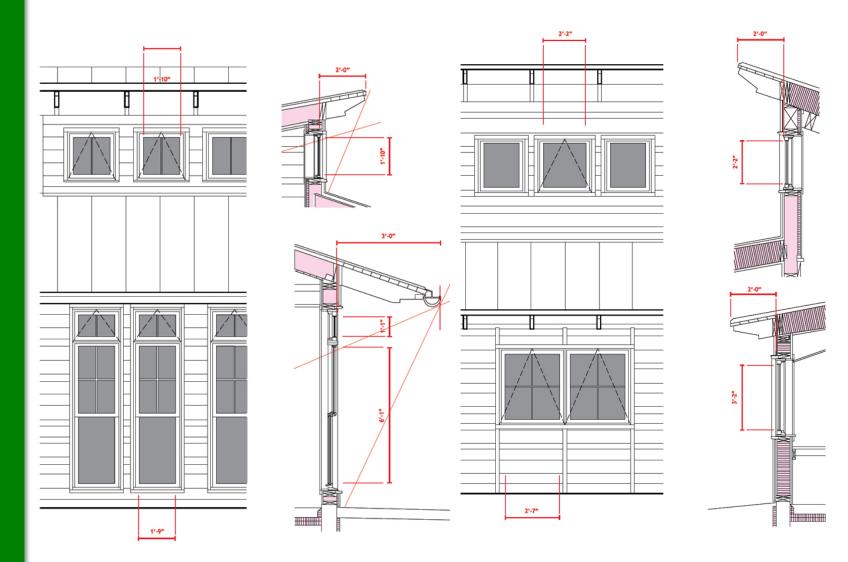
Wall, roof types and insulation levels varied as a function of exposure.




Passive Solar Heating

- Passive heating is used to minimize the energy needed for radiant floor heating
- The concrete floor in the hall is used with direct gain to store heat
- Large doors are opened to allow transfer to occupied spaces


Daytime

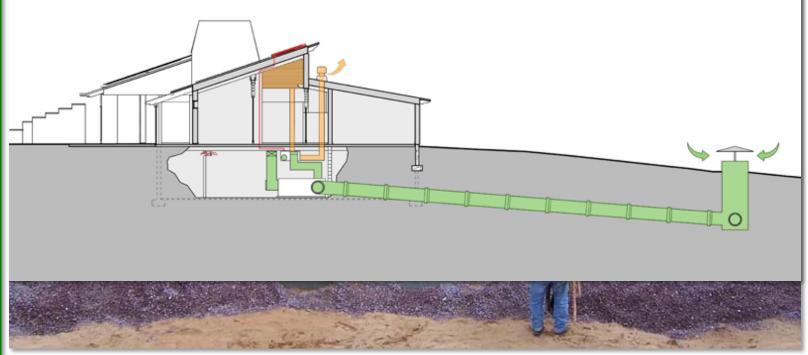


Glazing study for fixed vs operable and orientation. Higher than usual amount of operable panels in envelope to facilitate natural ventilation. Infers \$\$\$.

Passive Cooling: Shade Windows During Summer

Basic first tier principle of HEAT AVOIDANCE.

façades are fine tuned for orientation – overhang length and window size varies


Natural Ventilation

- Natural ventilation strategy based on NO A/C provision for the building
- Operable windows
- Flow through strategy
- Insect screens to keep out pests
- Chilled slabs in summer associated with geothermal system

Earth Duct for Air Pretreatment

Installation of large earth ducts to preheat and precool the air.

Radiant Heating and Cooling

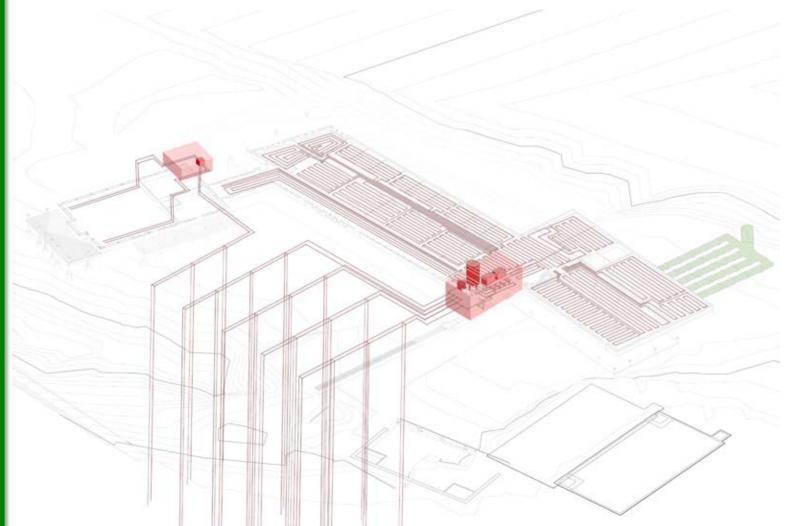


Diagram showing radiant heating system.

Three Season Hall

A large room designed NOT to be used in the winter when the weather is too severe to allow heating by a combination of passive + fireplace. Cuts down on energy requirements overall.

Energy and Atmosphere, 17 of 17 possible points: EA Credit 2 and Credit 6

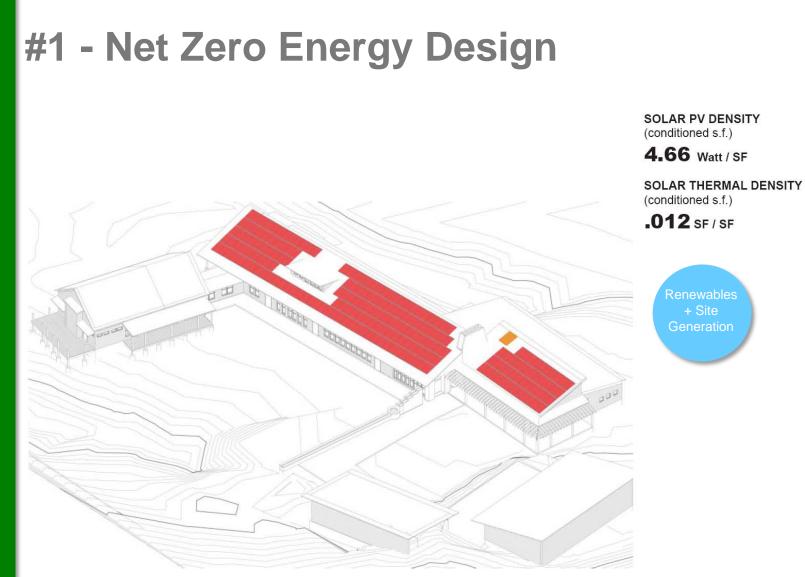
EA Prerequisite 1, Fundamental Building Systems Commissioning EA Prerequisite 2, Minimum Energy Performance EA Prerequisite 3, CFC Reduction in HVAC&R Equipment EA Credit 1.1a, Optimize Energy Performance, 15% New 5% Existing EA Credit 1.1b, Optimize Energy Performance, 20% New 10% Existing EA Credit 1.2a, Optimize Energy Performance, 25% New 15% Existing EA Credit 1.2b, Optimize Energy Performance, 30% New 20% Existing EA Credit 1.3b, Optimize Energy Performance, 35% New 25% Existing EA Credit 1.3b, Optimize Energy Performance, 40% New 30% Existing EA Credit 1.4a, Optimize Energy Performance, 40% New 30% Existing EA Credit 1.4b, Optimize Energy Performance, 50% New 40% Existing EA Credit 1.5b, Optimize Energy Performance, 55% New 45% Existing

EA Credit 2.1, Renewable Energy, 5%

EA Credit 2.2, Renewable Energy, 10%

EA Credit 2.3, Renewable Energy, 20%

EA Credit 3, Additional Commissioning


EA Credit 4, Ozone Depletion

EA Credit 5, Measurement and Verification

EA Credit 6, Green Power

Renewables + Site Generation Optimization has not been exhausted, it is very unlikely that Renewable Energy will be adequate to power the mechanical systems.

lf

A \$US250,000 PV array was included at the outset of the project budget and the building was designed to operate within the amount of electricity that this would generate.

Almost every square inch of roof was used for PV and solar hot water array mounting.

Infers modification of roofing selection and design to accommodate attachment of solar systems.

Ground Source Heat Pumps

Super insulate hot water runs to minimize heat losses.

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

Landscape + Site

SS Credit 3, Brownfield Redevelopment

SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms

SS Credit 4.3, Alternative Transportation, Alternative Fuel Refueling Stations

SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

SS Credit 6.1, Stormwater Management, Rate and Quantity

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof

SS Credit 7.2, Landscape & Exterior Design to Reduce Heat Islands, Roof

SS Credit 8, Light Pollution Reduction

Greening an existing brownfield can add plant materials to a site that are capable of sequestering carbon.

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

SS Credit 3, Brownfield Redevelopment

People, "Use" + Transportation SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms SS Credit 4.3, Alternative Transportation, Alternative Fuel Refueling Stations

SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

SS Credit 6.1, Stormwater Management, Rate and Quantity

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof

SS Credit 7.2, Landscape & Exterior Design to Reduce Heat Islands, Roof

SS Credit 8, Light Pollution Reduction

Alternative transportation reduces the GHG associated with travel to and from the building.

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

SS Credit 3, Brownfield Redevelopment

SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms

SS Credit 4.3, Alternative Transportation, Alternative Fuel Refueling Stations

SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

SS Credit 6.1, Stormwater Management, Rate and Quantity

Landscape + Site

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof

SS Credit 7.2, Landscape & Exterior Design to Reduce Heat Islands, Roof

SS Credit 8, Light Pollution Reduction

These credits can add plant materials to a site that are capable of sequestering carbon or repair existing natural landscape. Disturbance of the soil releases carbon into the atmosphere.

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

SS Credit 3, Brownfield Redevelopment

SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms

SS Credit 4.3, Alternative Transportation, Alternative Fuel Refueling Stations

SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

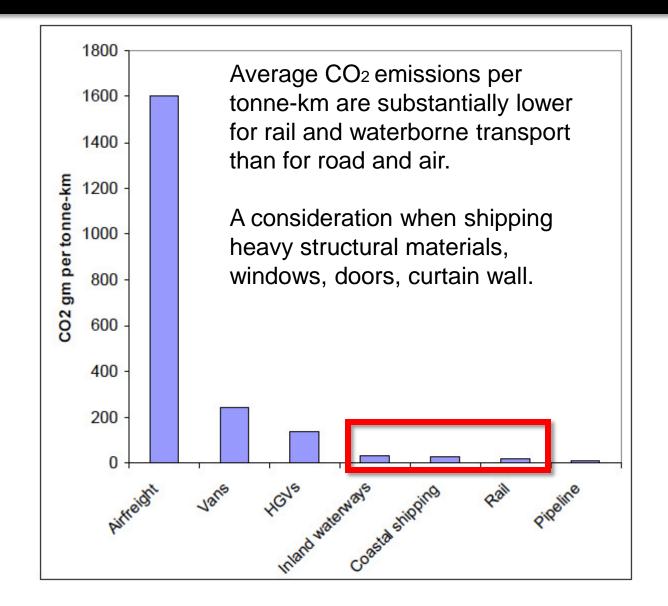
SS Credit 6.1, Stormwater Management, Rate and Quantity

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof

SS Credit 7.2, Landscape & Exterior Design to Reduce Heat Islands, Roof

SS Credit 8, Light Pollution Reduction


Heat island reduction lowers summer temperatures and reduces cooling load. *(Impossible to quantify...)* If plantings are used to do this, they can sequester carbon as well.

Operating energy

Landscape

+ Site

Transportation choice matters.

Materials and Resources, 7 of 13 possible points: MR Credit 4

MR Prerequisite 1, Storage & Collection of Recyclables

MR Credit 2.1, Construction Waste Management, Divert 50%

MR Credit 2.2, Construction Waste Management, Divert 75%

Embodied Carbon in Building Materials

MR Credit 4.1, Recycled Content: 5% (post-consumer + 1/2 post-industrial)

MR Credit 4.2, Recycled Content: 10% (post-consumer + 1/2 post-industrial)

MR Credit 5.1, Local/Regional Materials, 20% Manufactured Locally

MR Credit 5.2, Local/Regional Materials, of 20% Above, 50% Harvested Locally

MR Credit 7, Certified Wood

Many of the MR credits will impact embodied carbon but it is not currently part of the calculation.

Materials and Resources, 7 of 13 possible points: MR Credit 5

MR Prerequisite 1, Storage & Collection of Recyclables

MR Credit 2.1, Construction Waste Management, Divert 50%

MR Credit 2.2, Construction Waste Management, Divert 75%

Embodied Carbon in Building Materials

MR Credit 4.1, Recycled Content: 5% (post-consumer + 1/2 post-industrial)

MR Credit 4.2, Recycled Content: 10% (post-consumer + 1/2 post-industrial)

People, "Use" + Transportation MR Credit 5.1, Local/Regional Materials, 20% Manufactured Locally MR Credit 5.2, Local/Regional Materials, of 20% Above, 50% Harvested Locally

MR Credit 7, Certified Wood

The Leopold Foundation had a most unusual circumstance, owning their own Forest. However it is not that difficult to source materials locally.

Materials and Resources, 7 of 13 possible points: MR Credit 7

MR Prerequisite 1, Storage & Collection of Recyclables

MR Credit 2.1, Construction Waste Management, Divert 50%

MR Credit 2.2, Construction Waste Management, Divert 75%

Embodied Carbon in Building Materials

MR Credit 4.1, Recycled Content: 5% (post-consumer + 1/2 post-industrial)

MR Credit 4.2, Recycled Content: 10% (post-consumer + 1/2 post-industrial)

MR Credit 5.1, Local/Regional Materials, 20% Manufactured Locally

MR Credit 5.2, Local/Regional Materials, of 20% Above, 50% Harvested Locally

MR Credit 7, Certified Wood

Simply using wood is thought to be helpful in GHG as wood sequesters carbon. But this only makes sense if wood is the best or most local choice. Other materials may work better for different building types, uses, Fire code restrictions, etc.

#2 - Site Harvested Lumber:

The building was designed around the size and quantity of lumber that could be sustainably harvested from the Leopold Forest.

Embodied Carbon in Building Materials

Materials and Resources, other opportunities MR Credit 1

People, "Use" + Transportation MR 1.1 **Building Reuse:** Maintain 75% of Existing Walls, Floors, and Roof MR1.2 **Building Reuse:** Maintain 95% of Existing Walls, Floors, and Roof MR1.3 **Building Reuse:** Maintain 50% of Interior Non-Structural Elements

Embodied Carbon in Building Materials

- Reuse SIGNIFICANT building elements in order to reduce the need for extraction and processing of new materials
- This saves a significant amount of embodied carbon
- This also saves associated transportation energy as all of this material does not need to be transported to the building site (again)

Materials and Resources, other opportunities MR Credit 3

MR Credit 3.1 Resource Reuse 5%

MR Credit 3.2 Resource Reuse 10%

Embodied Carbon in Building Materials

- Reuse materials in order to reduce the need for extraction and processing of new materials
- This is very helpful in the reuse of demolished structures
- Structural steel can be easily reused
- Wood can be reused for flooring

Indoor Environmental Quality, 15 of 15 possible points: EQ Prerequisite 2

EQ Prerequisite 1, Minimum IAQ Performance

EQ Prerequisite 2, Environmental Tobacco Smoke (ETS) Control

EQ Credit 1, Carbon Dioxide (CO2) Monitoring

EQ Credit 2, Increase Ventilation Effectiveness

EQ Credit 3.1, Construction IAQ Management Plan, During Construction

EQ Credit 3.2, Construction IAQ Management Plan, Before Occupancy

EQ Credit 4.1, Low-Emitting Materials, Adhesives & Sealants

EQ Credit 4.2, Low-Emitting Materials, Paints

EQ Credit 4.3, Low-Emitting Materials, Carpet

EQ Credit 4.4, Low-Emitting Materials, Composite Wood

EQ Credit 5, Indoor Chemical & Pollutant Source Control

EQ Credit 6.1, Controllability of Systems, Perimeter

EQ Credit 6.2, Controllability of Systems, Non-Perimeter

EQ Credit 7.1, Thermal Comfort, Comply with ASHRAE 55-1992 EQ Credit 7.2, Thermal Comfort, Permanent Monitoring System

EQ Credit 8.1, Daylight & Views, Daylight 75% of Spaces

EQ Credit 8.2, Daylight & Views, Views for 90% of Spaces

This requirement presents a huge impediment in Foreign countries.

COMMON SENSE

Indoor Environmental Quality, 15 of 15 possible points: EQ Credit 8

EQ Prerequisite 1, Minimum IAQ Performance

EQ Prerequisite 2, Environmental Tobacco Smoke (ETS) Control

EQ Credit 1, Carbon Dioxide (CO2) Monitoring

EQ Credit 2, Increase Ventilation Effectiveness

EQ Credit 3.1, Construction IAQ Management Plan, During Construction

EQ Credit 3.2, Construction IAQ Management Plan, Before Occupancy

EQ Credit 4.1, Low-Emitting Materials, Adhesives & Sealants

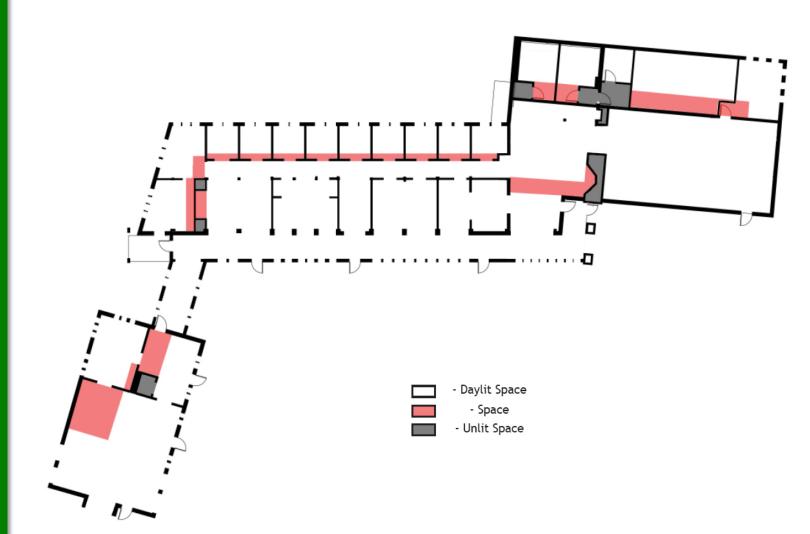
EQ Credit 4.2, Low-Emitting Materials, Paints

EQ Credit 4.3, Low-Emitting Materials, Carpet

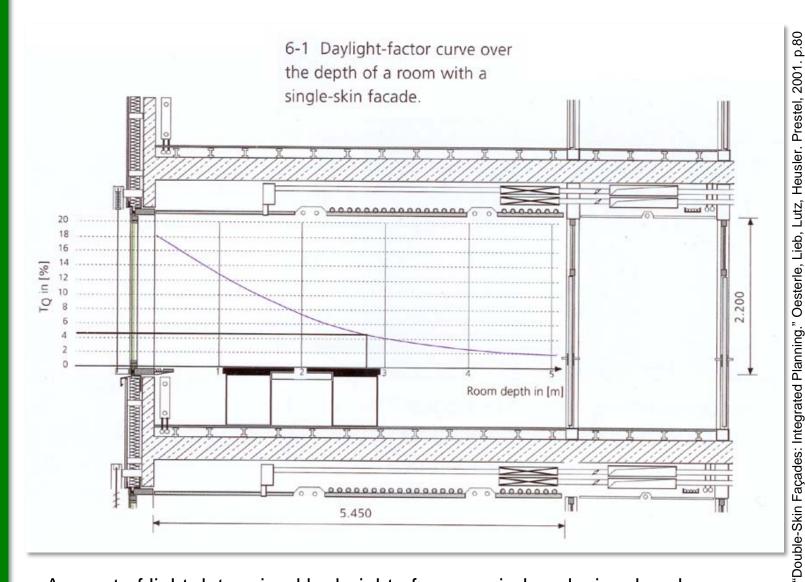
EQ Credit 4.4, Low-Emitting Materials, Composite Wood

EQ Credit 5, Indoor Chemical & Pollutant Source Control

EQ Credit 6.1, Controllability of Systems, Perimeter


EQ Credit 6.2, Controllability of Systems, Non-Perimeter

EQ Credit 7.1, Thermal Comfort, Comply with ASHRAE 55-1992


EQ Credit 7.2, Thermal Comfort, Permanent Monitoring System

EQ Credit 8.1, Daylight & Views, Daylight 75% of Spaces EQ Credit 8.2, Daylight & Views, Views for 90% of Spaces Operating energy

Daylight All Occupied Zones

Electric lights are only ON when there is insufficient daylight. You need a THIN plan to make this work. Depth from window cannot exceed 5 m.

- Amount of light determined by height of room, window design, head height, sill height + colour of surfaces and presence of furniture
- LEED daylight credit requires a minimum Daylight Factor of 2%

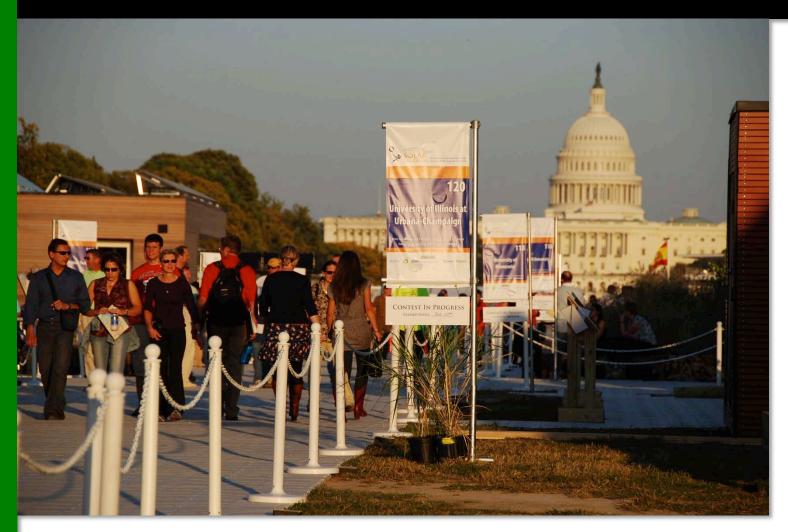
Watch out for finish colours. The natural colour of the wood made the left hand space more difficult to light naturally.

Innovation and Design Process, 5 of 5 possible points

ID Credit 1.1, Innovation in Design "Exemplary Performance, EAc6"

ID Credit 1.2, Innovation in Design "Exemplary Performance, EAc2"

ID Credit 1.3, Innovation in Design "Carbon Neutral Building Operation"


ID Credit 1.4, Innovation in Design "Exemplary Performance, MRc5.1"

ID Credit 2, LEED® Accredited Professional

Achieving carbon neutrality will pretty well guarantee ID credits for excesses in other categories.

Solar Decathlon 2009

Focus on net positive energy production pushed the decathlon entries largely into the Carbon Neutral Operating energy arena.


North House – Ontario/BC

Very high efficiency quadruple glazed system allowed for the modern glass box to be efficient to the point of net positive energy.

Exterior shading system highly criticized by jury however did provide excellent solar control against unwanted gain.

Germany

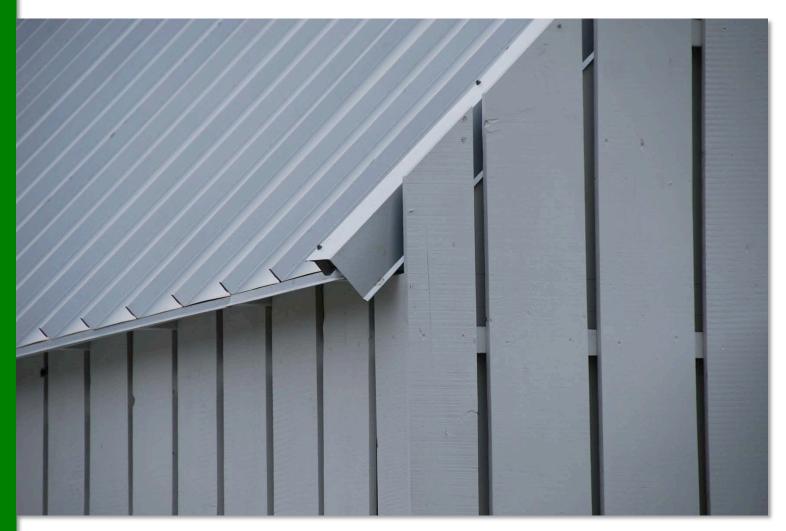


Winning entry. The building envelope is completely covered with PV shingles. Very different detailing issues.

High expense involved with incorporating solar collection throughout the entire envelope. Detailing issues for attachment.

Cornell University

Weathering steel type exterior presents detailing issues associated with mix of other materials.


University of Illinois at Champlain Urbana

Second place. PV over entire south face of roof. Some very difficult to maintain details at roof edges.

Highly differentiated amount of glazing on façades.

LED lighting behind façade pushes this rain screen to the point of being very difficult to maintain.

Louisiana State University

Also designed to be hurricane resistant. Designed for high humidity climate.

Highly differentiated amount of glazing on façades. Definite acknowledgment of solar orientation in the design.

University of Wisconsin-Milwaukee

The only decathlon entry that included carbon neutral embodied energy in its design.

Experimental cladding presents challenges for detailing the building envelope.

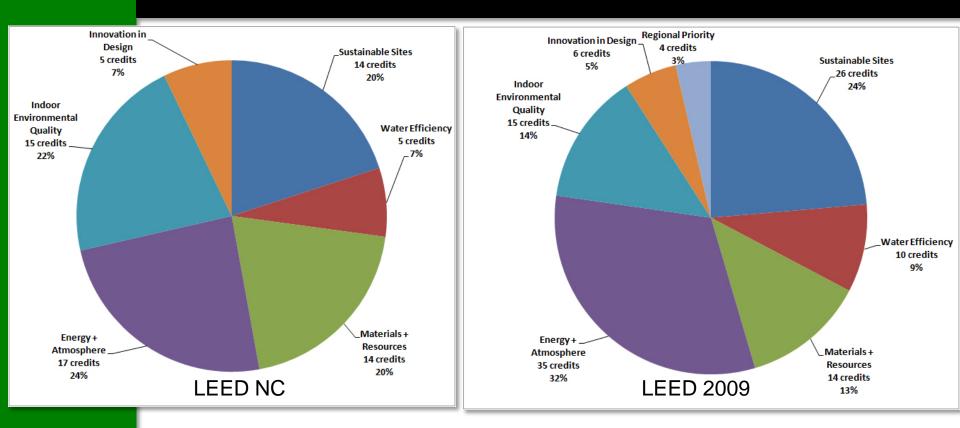
Different materials on the interior with an increased emphasis on wood. Clerestory windows at upper level for light and ventilation.

Butterfly roof for water collection presents challenges for detailing the building envelope.

Roof mounted solar collection also presents detailing issues and potential roof failures.

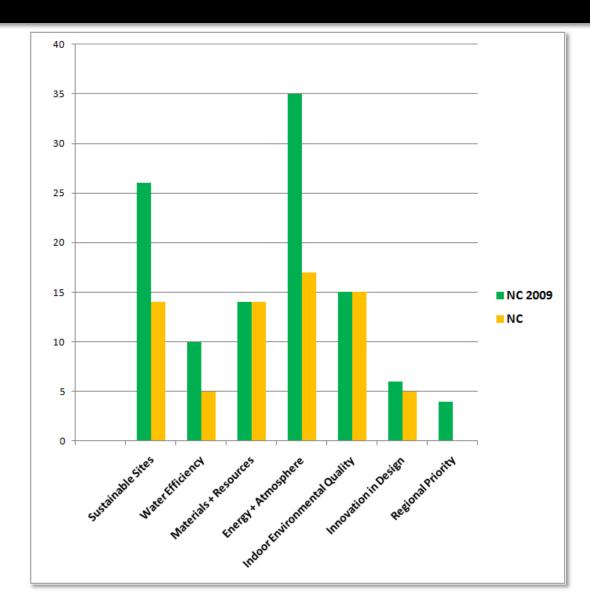
Arizona State University

Big passive push on this project. Back wall is trombe wall with water storage.


What is new in LEED 2009?

LEED 2009 and Carbon

General Changes:


- Total point score out of 110 rather than 70
- Credit weightings have changed, increasing some, lowering others
- Merger of two-part credits when only difference was threshold (e.g., MR Credit 4.1 and 4.2 are now MR Credit 4 with two different threshold levels)

LEED 2009 Credit Comparison

The most obvious change in the system is the increase in percentage of points for Energy & Atmosphere and Sustainable Sites.

LEED 2009 vs LEED Credit Distribution

LEED 2009 Awards

LEED CANADA FOR NEW CONSTRUCTION AND MAJOR RENOVATIONS 2009 100 base points; 6 possible Innovation in Design and 4 Regional Priority points

Certified Silver Gold Platinum 40–49 points 50–59 points 60–79 points 80 points and above

Note that projects must meet all prerequisites and achieve 40 points from other credits before they may earn any points from Regional Priority credits.

Sustainable Sites

SUSTAINABLE SITES 26 PO		5 POSSIBLE POINTS	
	Prereq 1 Credit 1	Construction Activity Pollution Prevention Site Selection	Required 1
	Credit 2	Development Density and Community Connectivity	3, 5
	Credit 3	Brownfield Redevelopment	
-	Credit 4.1	Alternative Transportation: Public Transportation Access	3, 6
	Credit 4.2	Alternative Transportation: Bicycle Storage and Changing Room	s 1
	Credit 4.3	Alternative Transportation: Low-Emitting and Fuel-Efficient Vehic	cles 3
	Credit 4.4	Alternative Transportation: Parking Capacity	2
	Credit 5.1	Site Development: Protect and Restore Habitat	1
	Credit 5.2	Site Development: Maximize Open Space	1
	Credit 6.1	Stormwater Design: Quantity Control	1
	Credit 6.2	Stormwater Design: Quality Control	1
	Credit 7.1	Heat Island Effect: Non-Roof	1
	Credit 7.2	Heat Island Effect: Roof	1
	Credit 8	Light Pollution Reduction	1

Sustainable Sites

Credit		Major Changes
Sustainable	e Sites	
Prereq 1	Construction Activity Pollution Prevention	2003 U.S. EPA Construction General Permit replaces the 1992 U.S. EPA Storm Water Management for Construction Activities, Chapter 3
Credit 1	Site Selection	 Additional requirement to not development on land that is previously undeveloped or graded land within 15.2 metres of a water body which supports or could supports fish, recreation or industrial use Correction to definition of farmland as many provinces and territories do not have an agricultural land reserve as referenced previously – new definition better aligns with USGBC's LEED NC 2009
Credit 2	Development Density and Community Connectivity	 Update to list of services for community connectivity Additional option to achieve community connectivity without the site density requirement for subset of points
Credit 3	Brownfield Redevelopment	-
		Landscape + Site

Sustainable Sites

	Credit	Major Changes
Sustainable	Sites	
Credit 4.1	Alternative Transportation: Public Transportation Access	 Distance must be measured from main building entrance An alternate compliance path for a Transportation Demand Management plan has been added
Credit 4.2	Alternative Transportation: Bicycle Storage & Changing Rooms	 Bicycle storage must be covered for FTE occupants Calculations are based on peak transient use People, "Use" +
Credit 4.3	Alternative Transportation: Low-Emitting & Fuel-Efficient Vehicles	Fuel efficient vehicle definition has changed
Credit 4.4	Alternative Transportation: Parking Capacity	 Projects are restricted to a parking capacity upper limit of 3.5 spaces per 93 m² (1000 ft²) Carpool requirement is based on total parking spaces (including visitor spaces)
Credit 5.1	Site Development: Protect and Restore Habitat	Slightly increased requirements for greenfield sites
Credit 5.2	Site Development: Maximize Open Space	Provided new pathway for sites with local zoning but no open space requirements

Landscape + Site

Sustainable Sites

	Credit	Major Changes	
Sustainable	Sustainable Sites		
Credit 6.1	Stormwater Design: Quantity Control	• For sites with existing imperviousness 50% or less, a new option has been provided to implement a stormwater management plan that protects receiving waterways from excessive erosion by implementing velocity and quantity control strategies	
Credit 6.2	Stormwater Design: Quality Control	 Requirement for a stormwater quality management plan has been added Total phosphorous requirement has been removed from calculations and replaced management plan to minimize pollution and eutrophication of waterways (with no levels) 	
Credit 7.1	Heat Island Effect: Non-Roof	Clarification of options and expanded to include, for example, shading from solar panels	
Credit 7.2	Heat Island Effect: Roof	-	
Credit 8	Light Pollution Reduction	 Modified requirements for interior and exterior light pollution Language added to clarify IESNA RP-33 zones Added public rights-of-way boundary exception for zones LZ2, LZ3 & LZ4 Clarified site boundary for luminaires in intersections Updated referenced standard to ASHRAE/IESNA Standard 90.1-2007 	
Credit 9	Tenant Design and Construction Guidelines	New Core & Shell credit	
	Potential here to occupants in mai low operating end	intaining	
		roof impacts envelope and roofing systems.	

Water Efficiency

WATER EFFICIENCY		10 POSSIBLE POINTS	
		Water Use Reduction	Required
		Water Efficient Landscaping Innovative Wastewater Technologies	2,4
	Credit 3	Water Use Reduction	2-4

Direct impact of water credits on carbon not very clear.

Water Efficiency

Credit		Major Changes
Water Effic	iency	
Prereq 1	Water Use Reduction, 20% Reduction	 New to LEED 2009, based on previous WE Credit 3.1 with the addition of a building/property water meter
		 Updated baselines for flow rates, based on the U.S. Energy Policy Act of 1992 and subsequent rulings by the U.S. Department of Energy, requirements of the Energy Policy Act of 2005, and the plumbing code requirements as stated in the 2006 editions of the Uniform Plumbing Code or International Plumbing Code
	Water Efficiency Landscaping	Merger of WE Credit 1.1 and WE Credit 1.2
		 Minimum area clarified (5% of total project site area (including building))
Credit 1		 Added factors for calculating mid-summer baseline case
		Addressed groundwater seepage for use in irrigation
		 Temporary irrigation systems limited to 1 year but no restrictions on type
Credit 2	Innovative Wastewater Technologies	Reduction of on-site treatment threshold to 50%
Credit 3	Water Use Reduction	See WE Prerequisite 1 changes for flow rate updates
		 Point thresholds have been increased with 3 levels available (30%, 35% and 40%)

Direct impact of water credits on carbon not very clear. Landscape aspects might assist in lowering heat island as this pertains to the selection of indigenous species and site disturbance.

Energy and Atmosphere

ENERGY AND ATMOSPHERE

Prereq 1 Prereq 2 Prereq 3 Credit 1	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance	Required Required Required 1-19
Credit 2 Credit 3	On-Site Renewable Energy Enhanced Commissioning	1-7 2
Credit 4	Enhanced Refrigerant Management	2
Credit 5 Credit 6	Measurement and Verification Green Power	3

Direct impact of the increase in points devoted to both energy efficiency and energy sources is very important for carbon. Also increased incentive for Green Power as well as Measurement and Verification.

35 POSSIBLE POINTS

Energy and Atmosphere

Credit		Major Changes
Energy & At	tmosphere	
Prereq 1	Fundamental Commissioning of Building Energy Systems	Clarified Commissioning Authority (CxA) experience
		 Updated referenced standard to ASHRAE/IESNA Standard 90.1-2007
Prereq 2	Minimum Energy Performance	 Performance Compliance Paths (comparison to MNECB and ASHRAE) are demonstrated through total building energy cost improvements including process loads
		Prescriptive Compliance Paths are available
Prereq 3	Fundamental Refrigerant Management	 Requirement for zero use of halons in fire suppression equipment has been incorporated into EA Credit 4
		Added alternative compliance path for campus projects using existing district chilled water plants only
		As per EA Prerequisite 2
Credit 1	Optimize Energy Performance	Point thresholds have changed
		Different thresholds for Core & Shell projects
Credit 2	On-Site Renewable Energy	 Point thresholds have been reduced but now based on total building energy cost (not only regulated loads)
		Different thresholds for Core & Shell projects

Energy optimization directly impacts insulation and air tightness of envelope.

Energy and Atmosphere

	Credit	Major Changes
Energy 8	& Atmosphere	
Credit 3	Enhanced Commissioning	 Clarified Commissioning Authority (CxA) experience and independency requirements The same CxA overseeing the enhanced commissioning tasks (EA Credit 3) must also oversee the fundamental commissioning tasks (EA Prerequisite 1) Clarifications were made to standardize LEED Commissioning Scope of Work
Credit 4	Enhanced Refrigerant Management	 Fire suppression systems must be free of ozone-depleting substances Refrigerants must comply with a maximum threshold for the combined contributions to ozone depletion and global warming potential Added option for not using refrigerants
Credit 5	Measurement and Verification	 Requirement added to provide process for corrective action if M&V plan shows energy savings are not being achieved Removed requirement for a water M&V program Separation of tenant submetering from base building creating two credits (EA Credit 5.1 and 5.2) for Core & Shell projects
Credit 6	Green Power	 Point threshold has been reduced to 35%, but now includes all building electricity (not only regulated loads) Clarified that all purchases of green power are based on the quantity of energy consumed, not cost

Materials and Resources

MATERIALS AND RESOURCES 14 POSSIBLE POINTS Prereg 1 Storage and Collection of Recyclables Required Credit 1.1 Building Reuse: Maintain Existing Walls, Floors, and Roof 1-3 Building Reuse: Maintain Interior Non-Structural Elements Credit 1.2 Credit 2 **Construction Waste Management** 1-2 Credit 3 Materials Reuse 1-2 Credit 4 **Recycled** Content 1-2 Credit 5 **Regional Materials** 1-2 Rapidly Renewable Materials Credit 6 Certified Wood Credit 7

Not much has changed in this section that will impact carbon.

Materials and Resources

			/
Credit		Major Changes	
Materials &	Resources		
Prereq 1	Storage and Collection of Recyclables	 Area for the collection of organic waste must be provided in municipalities that support such collection 	
Credit 1.1	Building Reuse: Maintain Existing Walls,	Combined with previous MR Credit 1.2	
Clean 1.1	Floors, and Roof	Point added for new lower threshold (55%)	!
Credit 1.2	Building Reuse: Maintain Interior Non- structural Elements	Credit no longer available to Core & Shell projects Embodied Carbon in Dailable to	
Credit 2	Construction Waste Management	. Building Materials	
Credit 3	Materials Reuse	Only lower threshold available to Core & Shell projects (5%)	
Credit 4	Recycled Content	Point thresholds have been increased (10% and 20%)	
		Point thresholds have been increased (20% and 30%)	
Credit 5	Regional Materials	Products must be extracted and processed within 800 km of the manufacturer rather than site	
		Allowance for fractions of products to be used to achieve credit	
Credit 6	Panidly Ponowable Materials	Point threshold has been reduced (2.5%)	
Credit o	Rapidly Renewable Materials	Credit no longer available to Core & Shell projects	
Credit 6/7	Certified Wood	Credit 6 for Core & Shell projects	
Credit 6/7		No exemption from Chain-of-Custody requirements for last vendor	

Materials selection of envelope feeds directly into these credits.

Envelope reuse can present issues with increased insulation/air tightness requirements.

INDOOR ENVIRONMENTAL QUALITY

15 POSSIBLE POINTS

Prereg 1	Minimum Indoor Air Quality Performance	Required
Prereq 2	Environmental Tobacco Smoke (ETS) Control	Required
Credit 1	Outdoor Air Delivery Monitoring	1
Credit 2	Increased Ventilation	1
Credit 3.1	Construction Indoor Air Quality Management Plan: During Construction	1
Credit 3.2	Construction Indoor Air Quality Management Plan: Before Occupancy	1
Credit 4.1	Low-Emitting Materials: Adhesives and Sealants	1
Credit 4.2	Low-Emitting Materials: Paints and Coatings	1
Credit 4.3	Low-Emitting Materials: Flooring Systems	1
Credit 4.4	Low-Emitting Materials: Composite Wood and Agrifibre Products	1
Credit 5	Indoor Chemical and Pollutant Source Control	1
Credit 6.1	Controllability of System: Lighting	1
Credit 6.2	Controllability of System: Thermal Comfort	1
Credit 7.1	Thermal Comfort: Design	1
Credit 7.2	Thermal Comfort: Verification	1
Credit 8.1	Daylight and Views: Daylight	1
Credit 8.2	Daylight and Views: Views	1

Credit		Major Changes
Indoor Env	vironmental Quality	
Prereq 1	Minimum Indoor Air Quality Performance	Updated referenced standard to ASHRAE Standard 90.1-2007
Prereq 2	Environmental Tobacco Smoke (ETS) Control	 Residential (Case 2) clarified to include hotels, motels, and dormitories Added language addressing signage in Option 1 and Option 2 Added requirement to weatherstrip exterior doors and windows in residential projects Added requirement to weatherstrip all residential unit doors leading to common hallways – however, if the common hallways are pressurized with respect to the residential units, an allowance is provided to follow Option 2 (considering the residential unit as the smoking room) Updated referenced standard for demonstrating acceptable sealing of residential units to Chapter 4 (Compliance Through Quality Construction) of the Residential Manual for Compliance with California's 2001 Energy Efficiency Standards
Credit 1 Outdoor Air Delivery Monitoring		 Updated referenced standard to ASHRAE Standard 62.1-2007 Clarified requirement to monitor CO₂ concentrations in all densely occupied areas (Case 1 - Mechanically Ventilated Spaces) Added requirement for outdoor airflow measurement (Case 1 - Mechanically Ventilated Spaces) Added specific requirements for naturally ventilated spaces (Case 2 - Naturally Ventilated Spaces)
Credit 2 Increased Ventilation		 Credit has been changed from ventilation effectiveness to requiring outdoor air ventilation rates 30% above minimum rates required by ASHRAE Standard 62.1-2007 Naturally ventilated spaces may alternatively meet the recommendations of the CIBSE Applications Manual Specific compliance path (Case 3) for residential projects requiring outdoor air ducted directly to the suite with air distributed to all regularly occupied areas
		elp to avert use of Air Conditioning for entilation impacts the design of the

envelope and selection of window systems.

Credit		Major Changes
Indoor E	nvironmental Quality	
Credit 3.1	Construction Indoor Air Quality Management Plan During Construction	 Updated referenced standard to the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) IAQ Guidelines For Occupied Buildings Under Construction, 2nd Edition 2007, ANSI/SMACNA 008-2008 (Chapter 3) Clarified that filtration media must be replaced immediately prior to occupancy Removed requirement to make provisions for inspections of building HVAC systems
Credit 3.2	Construction Indoor Air Quality Management Plan Before Occupancy	 Clarified the IAQ Management Plan implementation timeline requirements Clarified that all finishes must be installed prior to flush-out Flush-out during occupancy ventilation rate has been increased from 0.76 to 1.54 L/s/m² Threshold for formaldehyde level was revised from 50 to 27 parts per billion in Option 2, Air Testing
Credit 4.1	Low-Emitting Materials: Adhesives and Sealants	 Clarification on use of VOC budget Clarification on interior of the building VOC thresholds no longer updated to match date of building permit but set as per rating system requirements
Credit 4.2	Low-Emitting Materials: Paints and Coatings	 As per IEQ Credit 4.1 Moved primers from Green Seal requirements to SCAQMD requirements
Credit 4.3	Low-Emitting Materials: Flooring Systems	 Requirements now reflect all low-emitting flooring materials and finishes All flooring must comply with a minor exemption of up to 5% for speciality areas
Credit 4.4	Low-Emitting Materials: Composite Wood and Agrifibre Products	-

Interior finish selection associated with the envelope impacts air quality.

Credit		Major Changes			
Indoor Environmental Quality					
Credit 5	Indoor Chemical and Pollutant Source Control	 Required entryway system travel distance length increased and systems are required at regular entry points Combinations of permanently installed systems along with walk-off mats with provisions for maintenance are allowed Added exemption for new air filtration media for air handling equipment with a maximum flow rate of 283 L/s (600 cfm) or less provided they are equipped with the highest supply air filtration level commercially available for the specific equipment For residential projects, carbon monoxide alarms are required in areas adjacent to combustion equipment 			
Credit 6.1	Controllability of System: Lighting	 Re-structured credit from perimeter spaces to lighting control Credit not available to Core & Shell projects 			
Credit 6.2	Controllability of System: Thermal Comfort	 Re-structured credit from non-perimeter spaces to thermal comfort control Clarification of requirements for use of operable windows Thermal comfort controls as described by ASHRAE Standard 55-2004 Clarification on scope for Core & Shell projects 			
Credit 7.1	Thermal Comfort: Design	 Increased demonstration of compliance with ASHRAE 55-2004 -now required. 			
Credit 7.2	Thermal Comfort: Verification	 An occupant thermal comfort survey is required An alternative compliance path was added for residential buildings Credit no longer available to Core & Shell projects 			
Credit 8.1	Daylight and Views: Daylight	Multiple options now available – simulation, prescriptive, measurement or combin Operating			
Credit 8.2	Daylight and Views: Views	energy			

Increased amount of daylight modifies envelope design.

Innovation in Design + Regional Priority

INNOVATION IN DESIGN			6 POSSIBLE POINTS
	Credit 1	Innovation in Design	1-5
	Credit 2	LEED® Accredited Professional	1
REG	GIONAL PRIC	DRITY	4 POSSIBLE POINTS
	Credit 1	Durable Building	1
	Credit 2	Regional Priority Credit	1-3

Innovation in Design

	Credit	Major Changes
Innovation	in Design	
Credit 1	Innovation in Design	 Expanded innovation strategies allowed from 4 to 5 Added stipulation that no more than 3 exemplary performance points can be awarded
Credit 2	LEED [®] Accredited Professional	-
	Focusing on o few of these o	carbon can earn you quite a credits.

Regional Priority Credit **Major Changes Regional Priority** Credit 1 **Durable Building** Formerly MR Credit 8 in LEED Canada NC v1.0 Credit 2 **Regional Priority Credit** New to LEED 2009 ٠ Carbon in Not sure yet what the Regional Credit might do for carbon. 6

Contact Information

Terri Meyer Boake, BES, BArch, MArch, LEED AP Associate Director, School of Architecture, University of Waterloo

Past President Society of Building Science Educators President-Elect Building Technology Educators' Society Member OAA Committee on Sustainable Built Environment tboake@uwaterloo.ca

A pdf of this presentation will be found at: <u>www.architecture.uwaterloo.ca/faculty_projects/terri/</u>